
COLLEGE OF ENGINEERING School of Electrical Engineering
and Computer Science

• Review references, pointers

• Review static and dynamic
memory

• Structured data:
1-dimensional arrays

12/12/2020 CS 161

CS 161
Introduction to CS I

Lecture 16

Week 6 tips
• Early reports indicate that lab 6 is lengthy
• Provides additional practice with pass-by-reference, passing pointers,

using pointers, and dynamic memory
• You will get to check off more than 3 points next lab (if needed)
• You can do it!
• For more good practice, come to Thursday's study session
• Reminder: submit your lab files on TEACH (required)

• PythonTutor – useful visualization tool
• You'll need to #include <cstdlib> or <iostream> to use NULL

(otherwise just use 0)

2/12/2020 CS 161 2

Week 6 tips (2)
• Assignment 4 – demo slots are 15 mins long (weeks 8 & 9)
• Reminder – no late submissions without prior approval

• Any extension requests must come at least 24 hours before deadline
(emergencies excepted) and with a good reason

• Strategy
• Submit early versions (we will use your latest submission)
• Do your work on the ENGR servers, not locally on your laptop
• If your program isn't 100% complete, submit anyway:

• (1) partially complete (but compiling) program for partial credit (rather than 0)
• (2) answers to written questions

• If you delete your file, use the .snapshot directory to find and recover the
hourly backup (practice this in advance)

2/12/2020 CS 161 3

Casey Patterson's study

2/12/2020 CS 161 4

Review: references and pointers

• Reference: an alias to some variable (permanent)
• int& r = s;
• Can assign new values to r (which is s), but cannot make r be an

alias to another variable later
• Must be initialized when declared

• Pointer: stores the address of some variable
• int* p = &s;
• Can change what address r contains (where it points to) anytime
• Can be declared, then initialized later

2/12/2020 CS 161 5

Your turn: implement div_string()
1. /* implement div_string() here */

2. /* what return type? */

3. /* what arguments? */

4. /* hint: what does \n do inside a string? */

5. int main() {

6. string s = "hello", d = "bye", res;

7. div_string(s, d, &res);
8. cout << res << endl;

9. return 0;
10.}

2/12/2020 CS 161 6

Pass arguments as pointers
1. void div_string(string top, string bottom,

2. string* r) {

3. *r = top + "\n-----\n" + bottom;

4. }

5. int main() {

6. string s = "hello", d = "bye", res;

7. div_string(s, d, &res);
8. cout << res << endl;

9. return 0;
10.}

2/12/2020 CS 161 7

hello

bye
Addr1

Addr2

&s
s

&d
d

Addr3 &res
res

hello

bye
Addr4

Addr5

&top
top

&bottom
bottom

&r
rAddr3

Addr6

*

Review: memory model

• Stack: static memory
• Heap: dynamic memory
• Why do we care about the

difference?
• Heap management:
• new (create)
• delete (free/release)
• doesn't delete the pointer, but

instead the memory it points to
2/12/2020 CS 161 8

Your turn: On the stack or the heap?

2/12/2020 CS 161 9

1. int mercury = 5;

2. char* venus = NULL;

3. long* earth = new long;

4. int& mars = mercury;
5. short jupiter = mars + 27;

6. venus = new char;

7. int* saturn = &mercury;

8. long* uranus = earth;

Your turn: On the stack or the heap?

2/12/2020 CS 161 10

1. int mercury = 5;

2. char* venus = NULL;

3. long* earth = new long;

4. int& mars = mercury;
5. short jupiter = mars + 27;

6. venus = new char;

7. int* saturn = &mercury;

8. long* uranus = earth;

Good memory hygiene: clean up the heap

2/12/2020 CS 161 11

1. int mercury = 5;

2. char* venus = NULL;

3. long* earth = new long;

4. int& mars = mercury;
5. short jupiter = mars + 27;

6. venus = new char;

7. int* saturn = &mercury;

8. long* uranus = earth;

1. delete venus; venus = NULL;

2. delete earth; earth = NULL;

3. delete saturn?

4. delete uranus?

Course map

2/12/2020 CS 161 12

Basics
Storing data, calculations,

interacting with users
Decision making (adaptation)

and repetition (write once,
repeat forever!)

Divide and conquer
(modularization and code re-use

in functions)

Dynamic growth
(memory allocation
and management)

Structured data
(arrays and objects)

Divide and conquer part 2
(recursion)

How can we compute with a lot of data?

• Imagine storing the contents of every page in a book
• string page_1 = "Once upon a time, ..."
• string page_2 = "Further down the road, she found"
• string page_3 = "They rode quickly all night, and"

• …
• Very tedious!

• I want to print out each page.
• cout << page_1 << endl;
• cout << page_2 << endl;

• ...!

2/12/2020 CS 161 13

Array: ordered arrangement of similar items

2/12/2020 CS 161 14

Arrays enable easy iteration
1. string page[1024]; /* book with 1024 pages */

2. cout << page[0] << endl; /* print page 0 */

3. cout << page[10] << endl; /* print page 10 */

4. /* Loop over all pages */

5. for (int p = 0; p < 1024; p++)

6. cout << page[p] << endl; /* print page p */

2/12/2020 CS 161 15

Week 6 continues
q Attend lab (laptop required)
q Read Rao Lesson 4 (pp. 63-71)

C-style strings:
https://www.cprogramming.com/tutorial/lesson9.html
and functions: http://www.cplusplus.com/reference/cstring/

q Attend study session Thursday, 6-7 p.m., LINC 268
q Assignment 4 Design (due Sunday, Feb. 16)

See you Friday!
q Bring: an example of an array in real life

2/12/2020 CS 161 16

https://www.cprogramming.com/tutorial/lesson9.html
http://www.cplusplus.com/reference/cstring/

