
COLLEGE OF ENGINEERING School of Electrical Engineering 
and Computer Science

• Creating static arrays

• How to pass arrays to 

functions

• Working with C-style strings

12/14/2020 CS 161

CS 161
Introduction to CS I

Lecture 17



Warning
• Incidents involving plagiarism, of English and of code, have 

occurred in this class
• Penalties for academic misconduct are severe

• Ensure that you submit your own work!
• You can discuss the assignment with other students
• You cannot:
• Look at another student's code
• Copy another student's code
• Submit a modified version of another student's code
• Show another student your code
• Include code you found on the Internet in your program

2/14/2020 CS 161 2



Review

• What is the purpose of the heap?
• Allow the amount of memory used to dynamically change during 

runtime
• E.g. operating systems, web servers, anything with user 

interaction

2/14/2020 CS 161 3



Real-life examples of arrays

• Seats in the classroom
• Keys on a keyboard
• Rooms in a dormitory
• Houses in a subdivision

2/14/2020 CS 161 4



Arrays enable easy iteration
1. string page[1024]; /* book with 1024 pages */

2. cout << page[0] << endl;  /* print page 0  */

3. cout << page[10] << endl; /* print page 10 */

4. /* Loop over all pages */

5. for (int p = 0; p < 1024; p++)

6. cout << page[p] << endl; /* print page p */

2/14/2020 CS 161 5

Indexing



Arrays in C++

• Multiple items of the same data type
• Stored in contiguous memory locations
• Example: 

• int grades[5];

2/14/2020 CS 161 6

0 32 64 96 128

grades[0] … grades[4]…

• Questions:
• Stack or heap?
• Access an item by its index: grades[0], grades[1], …
• Array name = address of first element (grades[0])
• Initial values?



Static arrays in C++

• Declare but don't initialize

2/14/2020 CS 161 7

0 32 64 96 128

grades[0] … grades[4]…

1. int grades[5];

2. for (int i=0; i<5; i++)

3. cout << grades[i] << ", ";

4. cout << endl;



Static arrays in C++

• Declare and initialize

2/14/2020 CS 161 8

1. int grades[5] = {90, 80, 85, 95, 100};

2. for (int i=0; i<5; i++)

3. cout << grades[i] << ", ";

4. cout << endl;
5. /* {}: initializer; cannot use to assign */

6. //grades = {82, 98, 87, 99, 93};

0 32 64 96 128

grades[0] … grades[4]…

90                   80                    85                    95                    100



Static arrays in C++

• Initialization methods

2/14/2020 CS 161 9

1. int grades[5] = {0, 0, 0, 0, 0}; /* {}: initializer */

1. int grades[5] = {};    /* another way to set all 0s */

1. int grades[] = {4,3,1,7,2}; /* can omit size w/init */

0 32 64 96 128

grades[0] … grades[4]…

0                     0                      0                      0                      0



Static arrays in C++

• Declare and initialize with loops
• Which version is better?

2/14/2020 CS 161 10

1. int grades[5];
2. for (int i=0; i<5; i++)

3. grades[i] = 0;

1. int grades[5];
2. int i = 0;

3. while (i < 5) {

4. grades[i] = 0;
5. i++;

6. }

Both work, but version B is less clear 
to read, and more likely to have bugs.

A B



Static arrays in C++

• Declare and initialize with loops
• Even better (why?):

2/14/2020 CS 161 11

1. const int n_people = 5;

2. int heights[n_people];

3. for (int i=0; i<n_people; i++)

4. heights[i] = 0;

C



Your turn: User input to array

• Write a for loop to read values from the user and store 
them in this array:

2/14/2020 CS 161 12

1. const int n_people = 5;

2. int heights[n_people];

3. for ...



Your turn: User input to array

• Write a for loop to read values from the user and store 
them in this array:

2/14/2020 CS 161 13

1. const int n_people = 5;

2. int heights[n_people];

3. for (int i=0; i<n_people; i++) {

4. cout << "Enter height: ";
5. cin >> heights[i];

6. }



Arrays use pointers

• Name of array holds the address of the first (zeroth) item

2/14/2020 CS 161 14

1. int grades[5] = {90, 80, 85, 95, 100};

2. cout << grades << endl;

3. cout << grades[0] << endl;

4. cout << &grades[0] << endl;
5. cout << *grades << endl;   /* same as grades[0] */

0 32 64 96 128

grades[0] … grades[4]…



"Son of A Dark and Stormy Pointer": A Play
1. int* captain = NULL;
2. int soldier[3];

3. soldier[0] = 9;
4. soldier[1] = 7;

5. soldier[2] = 3;
6. soldier[0] = soldier[1] +

soldier[2];

7. soldier[2]++;

2/14/2020 CS 161 15

8. captain = &soldier[1]; 
/* address-of */

9. captain++;

10.*captain = 4;
11.soldier[1] = *captain;  

/* dereference */

12.soldier[2]++;
13.captain = soldier;



C-style strings

• Existed before the C++ "string" class we have been using
• C-style string = array of characters ending with '\0' (null)
• Must allocate space for #chars you want plus 1

• To access C-style string functions, #include <cstring>

2/14/2020 CS 161 16

1. char name[5] = {};      /* 4 characters plus '\0' */

2. cin.getline(name, 5);   /* 5 includes '\0' */

3. cout << name << ", length " << strlen(name) << endl;

Your new best friend



C-style strings

• Initialize with array initializer and null terminator

• Easier to read:

2/14/2020 CS 161 17

1. char name[5] = {"Luke"};  /* adds \0 for you */

1. char name[5] = {'L', 'u', 'k', 'e', '\0'};



Assignment 4: Text Surgeon
• Read in a line of text from the user, and perform analysis and 

manipulation of that string
• check_vowel_cons()
• letter_swap()
• flip_str()
• count_chars()
• + your own operation: permute characters? inject random 

characters?  doubledouble stringstring? <creativity opportunity>
• You will use char arrays, not "string" objects
• Design Document is due Feb. 16

2/14/2020 CS 161 18



More C-style string functions in <cstring>
• strlen() – length of string up to (not including) null terminator
• strcpy() – copy contents of one C-style string into another

• safer: strncpy() – copy a specified number of characters
• strcmp() – compare one C-style string with another

• return 0 if they are the same
• strcat() – concatenate one string to another
• strstr() – search for one string in another

• return NULL if not found
• cin.get() – take one char from the buffer at a time
• cin.getline() – take an entire line of determined size

2/14/2020 CS 161 19

http://www.cplusplus.com/reference/cstring/

http://www.cplusplus.com/reference/cstring/


What vocabulary did we learn today?

• Array
• Index
• C-style string (char array with null terminator)

2/14/2020 CS 161 20



What ideas and skills did we learn today?

• How to declare arrays on the stack
• Array initialization
• How to create C-style strings
• Character arrays that must be null-terminated ('\0')

• Useful C-style string functions

2/14/2020 CS 161 21



Week 6 nearly done!
• Minute paper: Please write down on scratch paper (leave in box):

1. One thing you learned today
2. One concept you find confusing

qAttend lab (laptop required)
q Read Rao Lesson 4 (pp. 63-71, 76-79) 

Rao Lesson 7 (pp. 165-166)
C-style strings: https://www.cprogramming.com/tutorial/lesson9.html
and functions: http://www.cplusplus.com/reference/cstring

q Assignment 4 Design (due Sunday, Feb. 16)
See you Monday!

2/14/2020 CS 161 22

https://www.cprogramming.com/tutorial/lesson9.html
http://www.cplusplus.com/reference/cstring/

