
COLLEGE OF ENGINEERING School of Electrical Engineering
and Computer Science

• Creating dynamic arrays

• Passing arrays to functions

12/17/2020 CS 161

CS 161
Introduction to CS I

Lecture 18

Week 7 tips

• Study worksheet 7 is posted – give it a try after this lecture
• Assignment 4
• Use valgrind to check for memory leaks (and other issues)
• C-style strings: allocate enough room for the null character
• strlen() does not include this character

• Use the stack for local variables that will not grow/shrink.
Use the heap for memory you need to pass around or change size
over time.

2/17/2020 CS 161 2

Week 7 tips (2)

• Midterm 2 coming up on 2/28 – LINC 100
• Covers material through end of week 7 (cumulative)
• Practice questions will be posted by Monday 2/24 (week 8)
• In-class review (but that's not all) on 2/26
• Evening review session on 2/27, 6-7 p.m. in LINC 228

2/17/2020 CS 161 3

Static and dynamic memory

• Stack: memory is permanently allocated (within function) and
permanently gone (when function exits)
• "Gone" means that memory can be re-used

(so no guarantee it will contain the original data)
• Heap:
• Memory can be allocated when needed, freed when not needed
• (e.g., each web page served; each document edited in a word processor)

• Memory consumption can dynamically grow and shrink
• Within a function
• In different functions

2/17/2020 CS 161 4

A note about pointer arithmetic

• Increment a pointer in memory (e.g., to next item in an array):
• p++;
• p += 2;

• These statements change where the pointer is pointing

• Increment the value the pointer points to:
• (*p)++;

• (*p) += 2; /* () not required here, but a good idea */

• These statements do not change where the pointer is pointing

2/17/2020 CS 161 5

Review static 1D arrays

• Note: allocating based on user input works too:

• But it cannot be changed later (different n_people)

2/17/2020 CS 161 6

1. const int n_people = 5;

2. int height[n_people];
3. for (int i=0; i<n_people; i++)
4. height[i] = rand()%13 + 60;

1. int n_people; cin >> n_people;
2. int height[n_people];

3. for (int i=0; i<n_people; i++)

4. height[i] = rand()%13 + 60;

See lec18-static-array.cpp

Review C-style strings
• C-style string: char array with '\0' (null) terminator
• Your turn: If the user types "Fred", what will this output?

2/17/2020 CS 161 7

1. char name[5] = {};

2. cin.getline(name, 5); /* 5 includes '\0' */

3. cout << name[0];

4. for (int i=1; i<strlen(name); i++) {
5. cout << "_" << name[i];

6. }

7. cout << endl;

Why do we need a null terminator?
• The \0 (null) character indicates where the string ends in

memory, just like the red bar on the grocery conveyer belt:
• If you omit it, many functions

will not know when to stop
• strlen(): when to stop counting?
• cout: when to stop printing?

• You may get lucky if the memory
after your array happens
to be 0, but no guarantees

• valgrind will give an error for strlen():
• "Conditional jump or move depends on uninitialised value(s)"

2/17/2020 CS 161 8

C++ vs. C-Style strings
• What to #include

• C++: <string>
• C-style: <cstring> (C++ version of C's <string.h>)

• Declaration
• C++: string
• C-style: char[]

• Access
• s.at(i) or s[i]
• s[i]

• Compatibility
• C-style to C++: automatically converted
• C++ to C-style: use s.c_str() to get a C-style string (char*) from s

92/17/2020 CS 161

Passing arrays to functions

• Arrays are always passed by reference (not value)
• Why?
• What does this mean for us?

• Assuming a function defined as one of the following:

2/17/2020 CS 161 10

1. int grades[5] = {90, 80, 85, 95, 100};

2. int max_grade = get_max(grades, 5); /* pass by ref */

1. int get_max(const int g[], const int n);

2. int get_max(const int* g, const int n);

Passing arrays to functions

2/17/2020 CS 161 11

1. int get_max(const int* g, const int n) {
2. int m = g[0];

3. for (int i=1; i<n; i++) {

4. if (g[i] > m)
5. m = g[i];

6. }

7. return m;

8. }

1. int main() {

2. int grades[] = {90, 80, 85, 95, 100};

3. cout << get_max(grades, 5) << endl;
4. return 0;
5. }

See lec18-pass-array.cpp

Dynamic arrays (on the heap)

• Dynamic single item

• Dynamic array (e.g., when size could change)

2/17/2020 CS 161 12

1. float* f = new float;

2. . . .

3. delete f;

4. f = NULL;

1. float* g = new float[3]; /* from heap */

2. . . .

3. delete [] g; /* free the memory */
4. g = NULL;

Dynamic arrays

• Allow us to allocate and release memory as needed
• Web server: Instead of storing all possible web pages

forever, only allocate space when it is served and release
when that page is no longer in use

2/17/2020 CS 161 13

Stack and heap arrays
• Given these declarations:

• Let's write code to:
1. Allocate 5 integers from the heap for heap_arr
2. For each array (stack_arr, heap_arr):

a. Set the item at index 2 to 42
b. Print the item at index 2
c. Increment the item at index 2
d. Print the address of the first item

3. Free the memory associated with heap_arr
2/17/2020 CS 161 14

1. int stack_arr[5];

2. int* heap_arr;

See lec18-arrays.cpp

What ideas and skills did we learn today?

• The importance of the null terminator for C-style strings
• How to pass arrays to functions
• Why it is useful to declare a function parameter "const"
• How to declare 1D arrays on the heap
• How delete 1D arrays on the heap

2/17/2020 CS 161 15

Week 7 begins!
q Attend lab (laptop required)
q Read Rao Lesson 7 (pp. 165-166)

Rao Lesson 8 (pp. 189-198)
Rao Lesson 4 (pp. 71-74)
Rao Lesson 6 (pp. 145-146)

q Study session Thursday 2/20, 6-7 p.m. in LINC 268
q Assignment 4 Peer Review (due Wednesday, Feb. 19)

See you Wednesday!
q Bring: [Name of] object you could model as a 2D array

2/17/2020 CS 161 16

