2, Oregon State

COLLEGE OF ENGINEERING | a5 Ciecticel ergineering

CS 161

Introduction to CS |
Lecture 21

* Recursion

2/24/2020 CS 161 1

PN Tee
38 Oregon State University
College of Engineering

Assignment 5 — Treasure Chest

* Define your own struct (type) with at least 4 attributes

* Create a program to store items of that type in a treasure
chest and keep track of the total collection value

e User can:
e Add item No live demo

(README.txt instead)

e Remove item

Display item
Add an item with random properties
<Your choice here>

2/24/2020 CS 161 2

PN Tee
38 Oregon State University
College of Engineering

Midterm 2

e Midterm 2: content through week 7 (but no structs)
e Review questions (and solutions) are on course website

* Bring your questions to class on Wednesday
e Stuck on pointers? Functions? 2D arrays?

* Review session: Thursday 2/27, 6-7 p.m., LINC 228

e Midterm: Friday 2/28, 2-2:50 p.m., LINC 100

* Format: true/false, multiple choice, one page short answer
* Scantron sheet: fill in bubbles with #2 pencil

* Bring to midterm: student ID and #2 pencil(s)

2/24/2020 CS 161 3

Let's calculate factorials

e Mathematical definition
(O =T

nl:=n*(n-1)*..*1

:=n * (n-1)! ifn>0

2/24/2020 CS 161

pan: Sl
38 Oregon State University
College of Engineering

R i
College of ingineering
Iterative factorial
Iterative definition: See lec21-factorial-iterative.cpp
factorial(0) := 1;
factorial(n) := n*(n-1)*(n-2)*...*3*2%*1;

. int factorial (int n) {

int fact;
1if (n==0)
fact = 1;
else
for (fact=n; n > 1; n--)
fact = fact * (n-1);

return fact;

2/24/2020 } CS 161 5

©O© O 1 o O = w N B

PN Tee
38 Oregon State University
College of Engineering

Computing Factorial Iteratively

factorial(4) =4 * 3
=1 D
=4 LS|
=24

factorial(o) = 1;

factorial(n) = n*(n-1)*...¥2*1;

2/24/2020 CS 161 6

PN Tee
38 Oregon State University
College of Engineering

Recursion

e A recursive definition includes a mention of itself

* "My descendants are my children + all of my children's
descendants."

* "My keys are located in this room or in some other room."

* A recursive function includes [at least one] call to itself

* Base case: when to stop (simplest case)

* Recursive step: a general statement that reduces the task
(eventually) to a base case

2/24/2020 CS 161 7

pan: Sl
38 Oregon State University
College of Engineering

Recursive Factorial

See lec21-factorial-recursive.cpp

Recursive definition:
Base case: factorial(0) = 1;
Recursive step: factorial(n) = n*factorial(n-1);

1. int factorial (int n) {

2. if (n == 0) /* Base case */
return 1;

else
/* recursive call */

return n * factorial(n - 1);

1 o O D W

2/24/2020 CS 161 8

PN Tee
38 Oregon State University
College of Engineering

Computing Factorial Recursively

factorial(4) = 4 * factorial(3)
=4 * (3 i+ factoriaI(Z)) factorial(n) = n*factorial(n-1);
=4 * (3 * (2 * factorial(1)))
=4 *(3*(2*(1* factorial(0))))
=M (3T (=8P 1] 1))
=4*(3*(2*1))
= AlZ((3*2)
=4*6
=24

2/24/2020 CS 161 9

factorial(o) = 1;

PN Sl
38 Oregon State University
College of Engineering

Differences

* Pros
* Readability

* Cons
 Efficiency
* Memory

2/24/2020 CS 161 10

PN Sl
38 Oregon State University
College of Engineering

Recursive Factorial Stack

/ Executes factorial (4)]

factorial(4)

factorial(4)

main()

2/24/2020 CS 161

G Tt
Recursive Factorial Stack

factorial(4)

l Step 0: executes factorial(4)
/[Executes factorial(3)]

return 4 * factorial(3}—

Space for
factorial(3)

Space for

factorial(4)

Space for
main()

2/24/2020 CS 161

s
Recursive Factorial Stack

factorial(4) Executes factorial(2)]

Step 0: executes factorial(4)

Ireturn 4 * factorial(3)I
lStep 1: execu

Ilreturn 3% factorial(2)I

Space for
factorial(2)

Space for
factorial(3)

Space for
factorial(4)

Space for
main()

2/24/2020 CS 161

PN Tee
38 Oregon State University
College of Engineering

Recursive Factorial Stack

factorial(4)

Executes factorial(1) Space for
factorial(1)

Step 0: executes factorial(4)

Ireturn 4 * factorial(3)I

Space for
factorial(2)

Space for
factorial(3)

Ireturn 2% factorial,(l)I

Space for
factorial(4)

Space for
main()

2/24/2020 CS 161

G Oregon State Universi
College of Engineert?ng
Recursive Factorial Stack

Space for

factorial(0)
Executes factorial(o) Space for

factorial(1)

factorial(4)
Step 0: executes factorial(4)

Ireturn 4 * factorial(3)I

lStep 1: executes factorial(3) S pace for

factorial(2)

Space for
factorial(3)

‘return 3 * factorial(2)I

Ireturn 2% factorial(15
Step 3:

Space for
return 1 * factorial(0) facto r|a|(4)

Space for
main()

2/24/2020 CS 161

G Oregon State Universi
College of Engineert?ng
Recursive Factorial Stack

Space for
factorial(0)

returns 1 Spa ce for
factorial(1)

factorial(4)
Step 0: executes factorial(4)

Ireturn 4 * factorial(3)I

lStep 1: executes factorial(3) S pace for

factorial(2)

‘return 3 * factorial(2)I

Space for
factorial(3)

Step 2: executes fact

Ireturn 2% factorial(15
Step 3: exe factorial(1) SpaC e for
factorial(4)

Space for
main()

2/24/2020 CS 161

Recursive Factorial

2/24/2020

PN Sl
38 Oregon State University
College of Engineering

Stack

factorial(4)

Step 0: executes factorial(4)

Ireturn 4 * factorial(3)I

lStep 1: executes factorial

'Ireturn 3% factorial(2)I

Step 2: exe ctorial(2)

I
return 2 * factori

ep 3: executes factorial(1)

Ire%{ * factorial(O)I
Step 4: executes factorial(0)

Step 5: return 1

return 1

CS 161

returns factorial(o)

factorial(1)

 Space for

factorial(2)

 Space for -

factorial(3)

 Space for -

factorial(4)

 Space for |

main()

pan: Sl
38 Oregon State University
" College of Engineering

Recursive Factorial Stack

factorial(4 .
@ returns factorial(1)]

Step 0: executes factorial(4)

Ireturn 4 * factorial(3)I

lStep 1: executes fac

factorial(2)

'Ireturn 3% factorial(2)I

: executes factorial(2)

Ve

}%/* factorial(1) factorial(3)
(lStep 3: executes factorial(1)

Step 6: return 1
return | * factorial(Oi factorial (4)
Step 5: return 1 < | Step 4: executes factorial(0)

return 1

main()

2/24/2020 CS 161

Recursive Factorial

90
E

AN R
‘. J@\ Oregon State University

gy College of Engineering

Stack

factorial(4) returns factorial(2)

Step 0: executes factorial(4)

return 4 * factorial(3)

Step 1:

| Iretu actoria11(2)I

Step 2: executes factorial(2)
Step 7: return 2
I 1

return 2 * factorial(1)

Step 6: return 1 (lStep 3: executes factorial(1)

return 1 * factorial(Oi
Step 5: return 1 < | Step 4: executes factorial(0)

return 1

2/24/2020 CS 161

factorial(3)

factorial(4)

pan: Sl
38 Oregon State University
College of Engineering

Recursive Factorial Stack

factorial(4) returns factorial(3)]

Step 0: executes factorial(4

Step 8: return 6 lStep 1: executes factorial(3)

return 3 * factorial(2)I

Step 2: executes factorial(2)
Step 7: return 2

return 2 * factorial(lj

Step 3: executes factorial(1)

return 1 * factorial(Oi ctorial(4
Step 5: return 1 < | Step 4: executes factorial(0) m
Mmain

2/24/2020 CS 161 20

Step 6: return 1

return 1

dis Oregon State Universi
College of Engineegng
Recursive Factorial Stack

returns factorial(4)]

Step 0: executes factorial(4)
Step 9: return 24

return 4 * factorial(3)

Step 8: return 6 (lStep 1: executes factorial(3)
! 1

return 3 * factorial(2)

Step 2: executes factorial(2)
Step 7: return 2

return 2 * factorial(li

Step 6: return 1 Step 3: executes factorial(1)

Ireturn 1* factorial(Oi

Step 5: return 1 Step 4: executes factorial(0)

return 1

2/24/2020 CS 161 21

When is recursion useful?

* Problems that have a "nested" or
recursive structure and would be
hard to write in an iterative fashion

 Water in a river is the sum of the
water from each tributary

* Recursion breaks the problem into
one small step +
"the rest of the solution”

2/24/2020 CS 161

PN Sl
38 Oregon State University
College of Engineering

Y g,
ILLINOIS
&
Champaign , Dan ﬁ,

-
=
s
¥

* Louisville

Evansville
KENTUCKY

22

PN Sl
38 Oregon State University
College of Engineering

Your turn: descendants

"My number of descendants is my number of children +
the sum of my children's descendants."

e What is the base case?

 What is the recursive step?

2/24/2020 CS 161 23

PN Tee
38 Oregon State University
College of Engineering

Your turn: descendants

"My number of descendants is my number of children +
the sum of my children's descendants."

e What is the base case?
* No children: #descendants =0

 What is the recursive step?
» #descendants = #children + #descendants(child1) + #descendants(child2) + ...

e This would be quite difficult to do in an iterative way!

2/24/2020 CS 161 24

PN Sl
38 Oregon State University
College of Engineering

Your turn: exponents

 Compute base”exp in a recursive function
 What is the function prototype?

e What is the base case?

 What is the recursive step?

2/24/2020 CS 161 25

PN Sl
38 Oregon State University
College of Engineering

Your turn: exponents

 Compute base”exp in a recursive function called pwr()
 What is the function prototype?

* int pwr(int base, int exp);

e What is the base case?

 What is the recursive step?

2/24/2020 CS 161 26

PN Shhd
B8 Oregon State University
College of Engineering

Your turn: exponents

 Compute base”exp in a recursive function called pwr()
 What is the function prototype?
* int pwr(int base, int exp);
e What is the base case?
* exp=0:returnl

 What is the recursive step?

* exp > 0: return base * pwr(base, exp-1)

2/24/2020 CS 161 27

pan: Sl
38 Oregon State University
College of Engineering

Exponent implementation

See lec21-power-recursive.cpp

1. int pwr(int base, 1int exp) {

if (exp == 0) /* base case */
return 1;

else
/* recursive call */

return base * pwr(base, exp - 1);

1 o O D> W DN

2/24/2020 CS 161 28

A2 Tet
38 Oregon State University
College of Engineering
Gotchas

* Failure to specify base case => stack overflow
e Failure to reach base case => stack overflow

* Problem doesn't get smaller
int myfun(int n) {
if (n == 0)
return O;
else

return myfun(n) ;

2/24/2020 CS 161 29

pan: Sl
38 Oregon State University
College of Engineering

What vocabulary did we learn today?

e Recursion
* Base case

* Recursive step

2/24/2020 CS 161 30

PN Sl
38 Oregon State University
College of Engineering

What ideas and skills did we learn today?

 How to design solutions with recursive definitions

* How to translate a recursive definition into a recursive
function

* Merits of iteration versus recursion

2/24/2020 CS 161 31

B Dy A
38 Oregon State University
College of Engineering
Week 8 begins!

 Attend lab (laptop required)

(J Read Rao lesson 7 (pp. 158-161)
Read Miller lecture 8:

http://www.doc.ic.ac.uk/~wijk/C++Intro/RobMillerL8.html|
1 Start on design for Assignment 5 (due Sunday, March 1)

See you Wednesday (midterm review)!

J Bring your questions about material from weeks 1-7

2/24/2020 CS 161 32

http://www.doc.ic.ac.uk/~wjk/C++Intro/RobMillerL8.html

