
COLLEGE OF ENGINEERING School of Electrical Engineering
and Computer Science

• Recursion recap

• Recursive data structures

13/4/2020 CS 161

CS 161
Introduction to CS I

Lecture 25

Week 9 tips

• This week
• Assignment 5 peer reviews – due Weds. 3/4 at midnight
• Study session – Thursday 3/5 from 6-7 p.m. in LINC 268
• Assignment 5 – due Sunday 3/8 at midnight

• Beyond week 9
• Proficiency demo – week 10
• Makeup assignment (6) – week 10
• Final exam – Monday 3/16 from 6-7:50 p.m. in LINC 128

3/4/2020 CS 161 2

Grace Hopper Celebration Scholarship

• Conference: Sept. 29 – Oct. 2 in Orlando, FL
• https://ghc.anitab.org/

• OSU EECS is offering scholarships for up to $1550 +
conference registration
• More info:

https://oregonstate.box.com/s/vtq5ynvfdjb8lgs661lsdcvmy8es8
91g

• Application deadline: March 27

3/4/2020 CS 161 3

https://ghc.anitab.org/
https://oregonstate.box.com/s/vtq5ynvfdjb8lgs661lsdcvmy8es891g

Questions about Assignment 5?

• My Planet Treasure Chest
_	_	_
_	D	_
_	T	_
Total value of 2 items: $127

• You can make this nicer to look at, more color, better
symbols

• Random generation of member values
• Floats: add 0.0 – 1.7 to 2.3: float(rand()%18)/10 + 2.3

3/4/2020 CS 161 4

Review: Recursion

• What is it?
• Function that calls itself 1 or more times (directly or indirectly)
• Has 1 or more base cases for stopping
• General case must eventually be reduced to a base case

• Recursive step: express relationship between problem(n)
and smaller problem such as problem(n-1)

• Recursive call: calling a function inside itself.

53/4/2020 CS 161

Your turn: Palindromes with digits

• Palindrome: Same value when read forwards as backwards
• e.g. 121, 67876, 3

• Pal(n): generate a palindromic digit string, given a starting
digit

• What is the base case?
• 1 -> "1"

• What is the recursive step?
• pal(n) = n + pal(n-1) + n

3/4/2020 CS 161 8

Input -> output
1 -> 1
2 -> 212
3 -> 32123
4 -> 4321234

Your turn: Palindromes with digits

• Implementation

• What is the base case?
• 1 -> "1"

• What is the recursive step?
• pal(n) = n + pal(n-1) + n

3/4/2020 CS 161 9

Input -> output
1 -> 1
2 -> 212
3 -> 32123
4 -> 4321234

1. string pal(char n) {
2. if (n == '1')
3. return "1";
4. else
5. return n + pal(n-1) + n;
6. }

See lec25-pal-digits.cpp

Your turn: Palindromes with digits

• That could have been done easily with an iterative solution
• Count from n down to 1 and back up to n: two for loops

• What about this version?
• What is the base case?
• 1 -> 1

• What is the recursive step?
• pal(n) = n + pal(n-1) + pal(n-1) + n

3/4/2020 CS 161 12

Input -> output
1 -> 1
2 -> 2112
3 -> 3211221123
4 -> 4321122112332112211234

Your turn: Palindromes with digits

• Implementation: give it a try on your own!

• What is the base case?
• 1 -> 1

• What is the recursive step?
• pal(n) = n + pal(n-1) + pal(n-1) + n

3/4/2020 CS 161 13

Input -> output
1 -> 1
2 -> 2112
3 -> 3211221123
4 -> 4321122112332112211234

Recursion with chocolate

• How many chocolates are in this dish?

• Recursive definition of num_choc(dish):
• Base case: num_choc(empty dish) = 0
• Recursive step: num_choc(dish) = 1 + num_choc(dish – 1)

3/4/2020 CS 161 16

Recursive data structures

• Let's model a train
• Train = one or more train_car items,

ending with a caboose

3/4/2020 CS 161 17

1. struct train_car {
2. string kind;
3. train_car* next_car;
4. };

Engine Car Car Caboose

Recursive data structures

• Let's create a train
• First car is the engine

3/4/2020 CS 161 18

1. struct train_car {
2. string kind;
3. train_car* next_car;
4. };

1. train_car* my_train = new train_car;
2. my_train->kind = "Engine";
3. my_train->next_car = NULL;

Engine
next_car

Recursive data structures

• Let's create a train
• First car is the engine
• Add more cars

3/4/2020 CS 161 19

1. struct train_car {
2. string kind;
3. train_car* next_car;
4. };

Engine
next_car

Car
next_car

Recursive data structures

• Let's create a train
• First car is the engine
• Add more cars

3/4/2020 CS 161 20

1. struct train_car {
2. string kind;
3. train_car* next_car;
4. };

Engine
next_car

Car
next_car

Car
next_car

Recursive data structures

• Let's create a train
• First car is the engine
• Last one is the caboose

3/4/2020 CS 161 21

1. struct train_car {
2. string kind;
3. train_car* next_car;
4. };

Engine
next_car

Car
next_car

Car
next_car

Caboose

Recursive train creation

• First car is the engine
• Last one is the caboose

3/4/2020 CS 161 26

1. void add_cars(train_car* t, int n_cars) {
2. t->next_car = new train_car; /* add a new car */
3. t->next_car->next_car = NULL; /* be safe! */
4. if (n_cars == 1) { /* base case: caboose */
5. t->next_car->kind = "Caboose";
6. } else {
7. t->next_car->kind = "_***_";
8. add_cars(t->next_car, n_cars-1); /* recursive call */
9. }
10.}

1. int n_cars = rand()%10 + 1;
2. add_cars(my_train, n_cars);

See lec25-recur-structs.cpp

Your turn: Recursively print the train

3/4/2020 CS 161 30

1. void print_train(train_car* t) {
2. cout << t->kind;
3. if (t->kind == "Caboose")
4. cout << "\n";
5. else
6. print_train(t->next_car);
7. }

See lec25-recur-structs.cpp 1. struct train_car {
2. string kind;
3. train_car* next_car;
4. };

Gotchas

• Chasing your tail

• Walking off the end of the train

3/4/2020 CS 161 31

1. train_car* t = new train_car;
2. t->kind = "Ouroboros";
3. t->next_car = t;
4. print_train(t);

1. void print_train(train_car* t) {
2. cout << t->kind;
3. print_train(t->next_car);
4. }

What ideas and skills did we learn today?

• How recursion can be used to construct chains of data
types (structs)

• How to traverse (e.g., print) a recursive data structure

• Challenge: implement
void delete_train(train_car* t);
to clean up the heap and avoid memory leaks

3/4/2020 CS 161 32

Week 9 continues

q Attend lab (laptop required)
q Read Rao lesson 7 (pp. 158-161)

Read Miller lecture 8:
http://www.doc.ic.ac.uk/~wjk/C++Intro/RobMillerL8.html

q Assignment 5 peer reviews (due Wednesday, March 4)
q Study session Thursday – see worksheet on calendar

See you Friday!

3/4/2020 CS 161 33

http://www.doc.ic.ac.uk/~wjk/C++Intro/RobMillerL8.html

