
COLLEGE OF ENGINEERING School of Electrical Engineering
and Computer Science

• Deleting recursive data

structures

• More recursion power

13/6/2020 CS 161

CS 161
Introduction to CS I

Lecture 26

Final Week 9 tips
• Check Canvas for any missing grades
• Notify cs161-020-ta@engr.orst.edu by next Wednesday (3/11)
• Except: Missing peer grades for Assign. 2 and 3 were recently set to 0.

Normally these points are given when you demo. If you missed a
demo, you may incorrectly have a 0 (never graded). These are now
being re-graded, so don't send an email about these unless they are
still 0 next Monday.

• Final grades are rounded (89.4 -> 89; 89.5 -> 90)
• Assignment 6 will be worth 80 points
• Worth doing if any previous assignment earned < 80 points
• Worth doing if you want practice with recursion J

3/6/2020 CS 161 2

Proficiency demo in week 10

• Go to your registered lab (or contact TAs)
• To prepare:
• Review 1D arrays, 2D arrays, and C-style strings
• Practice: Give yourself 50 minutes to try one or more of the

sample prompts
• Design on paper before you start coding
• Take a deep breath!

• Any questions about what to expect?

3/6/2020 CS 161 3

Review: Recursive data structures

• Let's model a train
• Train = one or more train_car items,

ending with a caboose

3/6/2020 CS 161 4

1. struct train_car {
2. string kind;
3. train_car* next_car;
4. };

Engine Car Car Caboose

Deleting recursive data structures

• Create the train:

3/6/2020 CS 161 5

1. train_car* my_train = new train_car;
2. my_train->kind = "Engine";
3. my_train->next_car = NULL;

4. int n_cars = rand()%10 + 1;
5. add_cars(my_train, n_cars);

Deleting recursive data structures

• Delete a train:

3/6/2020 CS 161 6

1. train_car* my_train = new train_car;
2. my_train->kind = "Engine";
3. my_train->next_car = NULL;

4. int n_cars = rand()%10 + 1;
5. add_cars(my_train, n_cars);

6. delete my_train;

This deletes the first train_car (Engine) only. The rest are lost forever.

Deleting recursive data structures

• Instead, let's delete the train with a recursive function:

3/6/2020 CS 161 7

1. train_car* my_train = new train_car;
2. my_train->kind = "Engine";
3. my_train->next_car = NULL;

4. int n_cars = rand()%10 + 1;
5. add_cars(my_train, n_cars);

6. delete_train(my_train);
7. my_train = NULL;

Deleting recursive data structures

• How did we create the train?

3/6/2020 CS 161 8

1. void add_cars(train_car* t, int n_cars) {
2. t->next_car = new train_car;
3. t->next_car->next_car = NULL;
4. if (n_cars == 1) {
5. t->next_car->kind = "Caboose";
6. } else {
7. t->next_car->kind = "_***_";
8. add_cars(t->next_car, n_cars-1);
9. }
10.}

1. struct train_car {
2. string kind;
3. train_car* next_car;
4. };

See lec26-recur-train.cpp

Deleting recursive data structures

• Delete a train:
• Wait to delete the current train_car

until the rest of the train is gone
• Base case?
• Recursive step?

3/6/2020 CS 161 9

Engine Car Car Caboose

my_train

1. struct train_car {
2. string kind;
3. train_car* next_car;
4. };

Deleting recursive data structures

• Delete a train:
• Wait to delete the current train_car

until the rest of the train is gone
• Base case? Caboose
• Recursive step? Delete rest of train, then delete this car

3/6/2020 CS 161 10

Engine Car Car Caboose

my_train

1. struct train_car {
2. string kind;
3. train_car* next_car;
4. };

Your turn: Delete a train
• Delete a train:

3/6/2020 CS 161 12

1. void delete_train(train_car* t) {
2. if (t->kind == "Caboose") /* base case */
3. delete t;
4. else { /* recursive call */
5. /* Delete the rest of the train first */
6. delete_train(t->next_car);
7. /* Now delete this car */
8. delete t;
9. }
10.}

1. struct train_car {
2. string kind;
3. train_car* next_car;
4. };

Engine Car Car Caboose

See lec26-recur-train.cpp

How NOT to delete a train
• Delete a train:

3/6/2020 CS 161 13

1. void delete_train(train_car* t) {
2. if (t->kind == "Caboose") /* base case */
3. delete t;
4. else { /* recursive call */
5. /* Delete this car */
6. delete t;
7. /* Delete the rest of the train */
8. delete_train(t->next_car);
9. }
10.}

1. struct train_car {
2. string kind;
3. train_car* next_car;
4. };

Engine Car Car Caboose

Seg fault

Our train_car is a linked list

• Add or remove cars as needed by reassigning pointers

3/6/2020 CS 161 14

Engine Car Car Caboose

Car

Engine Car Car Caboose

Engine Car Caboose

Car

What if each struct has two pointers? (Tree)

3/6/2020 CS 161 15

(From study worksheet 9)5

15 9

2 28 6 14

8

Your turn: Define a box struct

3/6/2020 CS 161 17

1. struct box {
2. int value;
3. box* left;
4. box* right;
5. };

5

15 9

2 28 6 14

8

Your turn: Set up level 1

3/6/2020 CS 161 19

1. struct box {
2. int value;
3. box* left;
4. box* right;
5. };

5

15 9

2 28 6 14

8

1. box* my_tree = new box;
2. my_tree->value = 5;
3. my_tree->left = NULL;
4. my_tree->right = NULL;

my_tree

Your turn: Set up level 2 (left child)

3/6/2020 CS 161 21

1. struct box {
2. int value;
3. box* left;
4. box* right;
5. };

5

15 9

2 28 6 14

8

1. my_tree->left = new box;
2. my_tree->left->value = 15;
3. my_tree->left->left = NULL;
4. my_tree->left->right = NULL;

my_tree

Same process for right child (try it on your own)

See lec26-recur-tree.cpp

Your turn: Delete the tree

3/6/2020 CS 161 23

5

15 9

2 28 6 14

8

1. void delete_tree(box* b) {
2. if (b == NULL) /* base case */
3. return;
4. else {
5. /* delete sub-trees first */
6. delete_tree(b->left);
7. delete_tree(b->right);
8. /* now delete this box */
9. delete b;
10. }
11.}

my_tree

See lec26-recur-tree.cpp

Recursion simplifies tasks: searching

• Where is the
combination
lock?

3/6/2020 CS 161 24

Recursion simplifies tasks: searching

• Where is the
combination
lock?

3/6/2020 CS 161 25

Recursion simplifies tasks: searching

• Where is the
combination
lock?

3/6/2020 CS 161 26

Recursion simplifies tasks: searching

• Where is the
combination
lock?

• Recursive definition of search_lock(image):
• Base case: search_lock(small image) = look at image
• Recursive step: search_lock(big image) = search_lock(half1) or

search_lock(half2)

3/6/2020 CS 161 28

What ideas and skills did we learn today?

• How to delete recursive data structures
• With a recursive function

• Data structure with single pointer: linked list
• Data structure with two pointers: tree
• How recursion can help break down bigger problems

3/6/2020 CS 161 29

Week 9 nearly done!

q Attend lab (laptop required)
q Read Rao lesson 7 (pp. 158-161)

Read Miller lecture 8:
http://www.doc.ic.ac.uk/~wjk/C++Intro/RobMillerL8.html

q Assignment 5 (due Sunday, March 8)

See you Monday!

3/6/2020 CS 161 30

http://www.doc.ic.ac.uk/~wjk/C++Intro/RobMillerL8.html

