ot Oregon State

COLLEGE OF ENGINEERING | 200 oo acel bngineering

CS 161

Introduction to CS |
Lecture 26

e Deleting recursive data

structures

e More recursion power

3/6/2020 CS 161 1

0* Oregon State University
College of Engineering
Final Week 9 tips

* Check Canvas for any missing grades
* Notify cs161-020-ta@engr.orst.edu by next Wednesday (3/11)

* Except: Missing peer grades for Assign. 2 and 3 were recently set to 0.
Normally these points are given when you demo. If you missed a
demo, you may incorrectly have a 0 (never graded). These are now
being re-graded, so don't send an email about these unless they are
still 0 next Monday.

* Final grades are rounded (89.4 ->89; 89.5 ->90)

* Assignment 6 will be worth 80 points

* Worth doing if any previous assignment earned < 80 points
* Worth doing if you want practice with recursion ©

3/6/2020 CS 161 2

7aNe tee
8 Oregon StateUniversity
@ College of Engineering

Proficiency demo in week 10

e Go to your registered lab (or contact TAs)
* To prepare:
* Review 1D arrays, 2D arrays, and C-style strings

* Practice: Give yourself 50 minutes to try one or more of the
sample prompts
* Design on paper before you start coding

* Take a deep breath!
* Any questions about what to expect?

3/6/2020 CS 161

o Oregon State Universi
College of Engineelt‘ying
Review: Recursive data structures

1. struct train car {
string kind;
train car* next car;

e Let's model a train

* Train = one or more train_car items,
ending with a caboose

W N

.}

i _HuiHAGuGGGE 0 i HENuHGGDGEnG &
| NN M
T — e — —————

Lo Gaoese

3/6/2020 CS 161 4

0* Oregon State University
College of Engineering

Deleting recursive data structures

* Create the train:
l. train car* my train = new train car;
2.my train->kind = "Engine';
3. my train->next car = NULL;

InN

. Int n cars = rand()%10 + 1;
5. add cars(my train, n cars);

3/6/2020 CS 161 5

Deleting recursive data structures

e Delete a train:

1.
2.
3.

6.

train car* my train = new train car;
_ Y__ _

my train->kind = "Engine";
my train->next car = NULL;
. Int n cars = rand()%10 + 1;

. add cars(my train, n cars);

delete my train;

AN o
A8\ Oregon State University
College of Engineering

This deletes the first train_car (Engine) only. The rest are lost forever.

3/6/2020 CS 161

AN o
A8\ Oregon State University
College of Engineering

Deleting recursive data structures

* |nstead, let's delete the train with a recursive function:

l. train car* my train = new train car;
2. my train->kind = "Engine";
3. my train->next car = NULL;

4. 1int n cars = rand()%10 + 1;
5. add cars(my train, n_cars);

6. delete train(my train);
'7.my_train = NULL;

3/6/2020 CS 161 7

o e
See lec26-recur-train.cpp Oregon StateUniversity

gy College of Engineering
Deleting recursive data structures

1. struct train car {
2. string kind;

3. train car* next car;
 How did we create the train? 4. };
1. void add cars(train car* t, int n cars) ({
2. t->next car = new trailn car;
3. t->next car->next car = NULL;
4, if (n cars == 1) {
5. t->next car->kind = "Caboose";
o. } else {
7. t->next car->kind = " *** ";
8. add cars(t->next car, n cars-1);
9. }
10.}

3/6/2020 CS 161 8

G Oregon State Universi
College of Engineelt‘ymg
Deleting recursive data structures
1. struct train car {

: 2. string kind;
g :
Delete a train: 3. train car* next car;

* Wait to delete the current train_car 4. };
until the rest of the train is gone

e Base case?

my_train * Recursive step?

!

LS Saboose —

3/6/2020 CS 161)

G Oregon State Universi
College of Engineelt‘ymg
Deleting recursive data structures
1. struct train car {

: 2. string kind;
g :
Delete a train: 3. train car* next car;

* Wait to delete the current train_car 4. };
until the rest of the train is gone

* Base case? Caboose
my_train * Recursive step? Delete rest of train, then delete this car

J
e Sebosse [—

3/6/2020 CS 161 10

See lec26-recur-train.cpp

AN tee
B8\ Oregon State University
S ’ *51 ; College of Engineering

Your turn: Delete a train 1. struct train_car |
2. string kind;
* Delete a train: 3. train car* next car;
. void delete train(train car* t) ({ 4. };
if (t->kind == "Caboose") /* base case */
delete ¢t;
else { /* recursive call */

delete train(t->next car);
/* Now delete this car */
delete t;

P ©O© o0 JdJoyOx WDN

O o
—

/* Delete the rest of the train first */

3/6/2020 CS 161

a0 | Sabogse

12

R © 00 JdJoy O WDN

AN tee
B8\ Oregon State University
S ’ *51 ; College of Engineering

How NOT to delete a train

e Delete a train:

1. struct train car {
2. string kind;
3 train car* next car;

. void delete train(train car* t) ({ 4. };
if (t->kind == "Caboose") /* base case */
delete ¢t;
else { /* recursive call */
/* Delete this car */
delete t;

/* Delete the
delete_ train.

Seg fault

3/6/2020 CS 161 13

paN: R
B8 Oregon State University
College of Engineering

Our train_car is a linked list

* Add or remove cars as needed by reassigning pointers

Car

Car

3/6/2020 CS 161 14

paN: R
B8 Oregon State University
College of Engineering

What if each struct has two pointers? (Tree)

(From study worksheet 9)

3/6/2020 CS 161 15

paN: R
B8 Oregon State University
College of Engineering

Your turn: Define a box struct

1. struct box {
2 int value;
3. box* left;
4. box* right;
5. 17

3/6/2020 CS 161 17

0' Oregon State University
College of Engineering
Your turn: Set up level 1
. struct box { m
. int value;
box* left;
box* right;

O b w N

.}

. box* my tree = new box;
. my tree->value = 5;

. my tree->left = NULL;

. my tree->right = NULL;

28 nm

3

B W R

3/6/2020 CS 161 1.9

D
({78 Oregon State University
See lec26-recur-tree.cpp ColfegeofEngineermg

Your turn: Set up level 2 (left child)

. struct box { m
. int value;
. box* left;
. box* right;
-}
my tree->left = new box;

my tree->left->value = 15; H
my tree->left->left = NULL;

Same process for right child (try it on your own) %

O b w N

> Wb

my tree->left->right = NULL;

3/6/2020 CS 161 21

D]
See lec26-recur-tree.cpp Sfﬁ:gjz}‘z‘;‘gﬂi?ﬁig

Your turn: Delete the tree

1. void delete tree (box* Db) m

2. if (b == NULL) /* base case */

3. return;

4, else {

5. /* delete sub-trees first */

6. delete tree (b->left);

7. delete tree (b->right);

8. /* now delete this box */ ﬁ 28 ﬁ m
9. delete Db;

10. } P
11.) 3

3/6/2020 CS 161 23

A2 tee
A8\ Oregon State University
College of Engineering

e Where is the

combination
lock?

3/6/2020

A2 o
A8\ Oregon State University
College of Engineering

e Where is the

combination
lock?

3/6/2020

A2 tee
A8\ Oregon State University
College of Engineering

Recursion simplifies tasks: searching

e Where is the

combination
lock?

L=, “ A
=

!
o
-

3/6/2020 CS 161 26

AN tee
38\ Oregon State University
College of Engineering

Recursion simplifies tasks: searching

e Where is the

combination
lock?

* Recursive definition of search_lock(image):
* Base case: search_lock(small image) = look at image

* Recursive step: search_lock(big image) = search_lock(halfl) or
search_lock(half2)

3/6/2020 CS 161 28

AN sS4
8 Oregon StateUniversity
College of Engineering

What ideas and skills did we learn today?

How to delete recursive data structures

* With a recursive function
* Data structure with single pointer: linked list
e Data structure with two pointers: tree
 How recursion can help break down bigger problems

3/6/2020 CS 161 29

AN sS4
8 Oregon StateUniversity
College of Engineering

Week 9 nearly done!

J Attend lab (laptop required)
(] Read Rao lesson 7 (pp. 158-161)
Read Miller lecture 8:
http://www.doc.ic.ac.uk/~wjk/C++Intro/RobMillerL8.html
] Assignment 5 (due Sunday, March 8)

See you Monday!

3/6/2020 CS 161 30

http://www.doc.ic.ac.uk/~wjk/C++Intro/RobMillerL8.html

