
COLLEGE OF ENGINEERING School of Electrical Engineering
and Computer Science

• Command-line arguments

• File input and output

13/9/2020 CS 161

CS 161
Introduction to CS I

Lecture 27

Week 10 tips

• Proficiency demo!
• Check Canvas for any missing grades
• Notify cs161-020-ta@engr.orst.edu by Wednesday (3/11)
• Your Canvas grade may not be your final course grade

• Final exam: Monday, 3/16, 6-7:50 p.m., LINC 128
• All T/F and multiple choice (no short answer)
• Review Midterm 1 and 2 solutions
• See additional practice questions for structs and recursion (website)
• No Thursday review session: review in class instead on Friday

3/9/2020 CS 161 2

Assignment 6: Train Journey

• Worth 80 points
• Worth doing if any previous assignment earned < 80 points
• Worth doing if you want practice with recursion J
• Goal: extend the train_car struct (linked list) to allow passengers

to board the train, then simulate a train journey

3/9/2020 CS 161 3

A note about the stack vs. heap

• I want 1,000,000 train_cars. Where can I get them?

3/9/2020 CS 161 4

1. /* Static allocation */
2. train_car my_train[1000000];

1. /* Dynamic allocation */
2. train_car* my_train = new train_car[1000000];
3. delete [] my_train;
4. my_train = NULL;

See lec27-stack-heap.cpp

A note about the stack vs. heap

• I want 1,000,000 train_cars. Where can I get them?

• => The heap is bigger than the stack
3/9/2020 CS 161 5

1. /* Static allocation */
2. train_car my_train[1000000];

1. /* Dynamic allocation */
2. train_car* my_train = new train_car[1000000];
3. delete [] my_train;
4. my_train = NULL;

Seg fault

See lec27-stack-heap.cpp

Give the user control over size of train
• Prompt user for n_cars

• Great for running test cases… unless you have to test many times
3/9/2020 CS 161 6

1. /* Create my train */
2. train_car* my_train = new train_car;
3. my_train->kind = "Engine";
4. my_train->next_car = NULL; /* be safe! */

5. cout << "How many cars to add to the train? ";
6. int n_cars;
7. cin >> n_cars;

8. add_cars(my_train, n_cars);

See lec27-recur-train.cpp

Give the user control over size of train

• Instead of waiting to type input each time,
make it part of the command line
• ./lec27-recur-train-args 1
EngineCaboose

• ./lec27-recur-train-args 3
Engine_***__***_Caboose

• ./lec27-recur-train-args 5
Engine_***__***__***__***_Caboose

3/9/2020 CS 161 7

See lec27-recur-train-args.cpp

Give the user control over size of train

• Instead of waiting to type input each time,
make it part of the command line

3/9/2020 CS 161 8

1. int main(int argc, char* argv[]) {
2. train_car* my_train = new train_car;
3. my_train->kind = "Engine";
4. my_train->next_car = NULL;
5. int n_cars = atoi(argv[1]);
6. add_cars(my_train, n_cars);
7. ...
8. }

See lec27-recur-train-args.cpp

Number of arguments Array of char*, one per argument

Give the user control over size of train

• argc: number of arguments
• argv: array of C-style strings
• argv[0] = name of executable
• argv[1] = first user-specified argument
• …

• Convert C-style string to integer with atoi()
• int n_cars = atoi(argv[1]);

• Likewise, atof() for floats

3/9/2020 CS 161 9

See lec27-recur-train-args.cpp

Good practice: check argc first

• To see the return value of the last command in linux:
• echo $?

3/9/2020 CS 161 10

1. /* Expect and require argc == 2 (one user argument) */
2. if (argc != 2) {
3. cout << "Usage: " << argv[0] << " n_cars" << endl;
4. return 1; /* signal an error */
5. }

See lec27-recur-train-args.cpp

Your turn

• What is the value of argc if the user entered this command
to run a program?
./my_prog the quick brown fox

• What does the 2-D array (argv) look like?

3/9/2020 CS 161 11

Working with files

• File = linear sequence of characters
• Stream = channel on which data is sent or received

• cin: channel connected to keyboard
• cout: channel connected to screen

• To work with files, create a file stream
• #include <fstream>
• ifstream in_stream;
• ofstream out_stream;

3/9/2020 CS 161 12

Write to an output file stream

• It works just like cout

3/9/2020 CS 161 13

1. ofstream out_stream;
2. out_stream.open("my_output.txt");
3. out_stream << "I am writing to a text file." << endl;
4. out_stream.close();

See lec27-files.cpp

Read from an input file stream

• It works just like cin

3/9/2020 CS 161 14

1. string w;
2. int n_words = 0;
3. in_stream.open("my_output.txt");
4. while (in_stream >> w) {
5. n_words++;
6. }
7. in_stream.close();
8. cout << "Read " << n_words << " words from file." << endl;

See lec27-files.cpp

Using files with command-line arguments
• ./count_words input.txt
• ./write_opera output.txt

• ./translate input_english.txt output_piglatin.txt

3/9/2020 CS 161 15

Minute paper

• What can you do now that you could not have done at the
start of the term?
• Not what do you know or have heard of
• What skill or ability do you have?
• Programming? Design? Testing? Debugging?

3/9/2020 CS 161 16

Week 10 begins!

q Demonstrate your proficiency in lab! Flex your muscles!
q Read:

Args: https://www.geeksforgeeks.org/command-line-arguments-in-c-cpp/
File I/O: http://www.doc.ic.ac.uk/~wjk/C++Intro/RobMillerL4.html

q Review and study for the final exam
q Assignment 6 (due Saturday, March 14)

See you Wednesday!

3/9/2020 CS 161 17

https://www.geeksforgeeks.org/command-line-arguments-in-c-cpp/
http://www.doc.ic.ac.uk/~wjk/C++Intro/RobMillerL4.html

