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Tech Tips

• We will start at 2:00 p.m. (you can't hear me yet)

• Please mute your microphone.
To ask a question, click "raise hand".

• This meeting will be recorded. Hi!  I'm still here J



Week 10 tips

• Proficiency demo: This has been converted to a regular lab, 
with a score of 0, 1, or 10 
• If you did not get a 10, your course grade will not be capped at 72%

as originally indicated
• There will be no in-person makeup proficiency exam (lab 10)

• Extra credit (for final exam): survey of course materials 
(available on Canvas until midnight today)

3/13/2020 CS 161 2



Week 10 tips: Final exam

• Final exam: Monday, 3/16, 6-7:50 p.m., on Canvas
• All T/F and multiple choice (no short answer)
• You have 1 hour and 50 minutes from when you start, 

up to 8:15 p.m. on 3/16 
(extra time in case you have a delay getting started; 
still only 1 hour 50 minutes for your exam)

• Canvas will auto-submit your exam if you are still working on it 
at 8:15 p.m. on March 16

• I will have virtual office hours today via Zoom

3/13/2020 CS 161 3



Assignment 6 questions?

• Worth 80 points
• Worth doing if any previous assignment earned < 80 points
• Worth doing if you want practice with recursion J
• Goal: extend the train_car struct (linked list) to allow passengers 

to board the train, then simulate a train journey
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/* Structure defining a train car */
struct train_car {
string kind; /* Engine, regular car (_***_), or Caboose */

train_car* next_car; /* pointer to the next train car */
};



Final Exam Review Topics

• Data types and min/max ranges
• Expressions
• Operators
• Conditional statements
• Loops
• Random numbers
• Variable scope and shadowing

3/13/2020 CS 161 5

• Functions
• References
• Pointers
• 1-D arrays
• Dynamic memory allocation
• C-style strings
• 2-D arrays



Minimum and maximum values
Type Minimum Maximum
short (16 bits) -32,768       −𝟐𝒃"𝟏 +32,767      𝟐𝒃"𝟏 − 𝟏
unsigned short 0                   0 65,535      𝟐𝒃 − 𝟏

int (32 bits) -2,147,483,648 +2,147,483,647
unsigned int 0 4,294,967,295
long (64 bits) -9,223,372,036,854,775,808 +9,223,372,036,854,775,807

unsigned long 0 18,446,744,073,709,551,615

float -3.4e38 3.4e38
double -1.8e308 1.8e308
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From Midterm 1

• Data types and min/max ranges
• base types:
• signed vs. unsigned

• Expressions
• Parentheses: 12 / (3 + 1)
• Integer vs. floating point math: 
(17–4) / 2      vs.           (17–4) / 2.0
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bool, char, short, int, long, float, double



From Midterm 1
• Operators
• Arithmetic: +  - *  /  %  ++  --
• Relational: <  <=  >  >=  ==  !=
• Logical:  &&  ||  !
• Indexing: []
• Memory:  &(address-of)  *(deref) 

.(member) ->(deref+member)
• Precedence

https://en.cppreference.com/w/cpp/lang
uage/operator_precedence
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a++  a-- [] . ->
!  ++a  --a   *p  &a

*   /   %
+  -

<      <=     >    >=

==     !=
&&
||

=  +=  -=  *=  /=  %=

Operator precedence

https://en.cppreference.com/w/cpp/language/operator_precedence


From Midterm 1
• Conditional statements
• if-then
• switch
• break

• Loops
• for
• while
• do-while
• break
• When to use each?
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From Midterm 1

• Random numbers
• Generate random numbers between 20 and 25 (inclusive)

• Generate random numbers between -3 and 5 (inclusive)

• Variable scope (visibility) 
and shadowing
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From Midterm 1

• Random numbers
• Generate random numbers between 20 and 25 (inclusive)

• Generate random numbers between -3 and 5 (inclusive)

• Variable scope (visibility) 
and shadowing
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rand()%6 + 20

rand()%9 - 3 int m = 3;
if (m > 0) {
int m = 43;
cout << m++ << endl;

}
cout << m << endl;



Functions

• Function declaration vs. definition?

• Parts of a function declaration/definition?

• How to call a function?

• Pass by value vs. pass by reference

2/26/2020 CS 161 12



Functions

• Function declaration vs. definition?

• Parts of a function declaration/definition?

• How to call a function?

• Pass by value vs. pass by reference
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Declaration has return type, name, parameters; definition has code body

Return type, name, names and types of parameters

retval = fn_name(argument1, argument2, …);

Value: make a copy; reference: pass the address (can modify value)



Functions

• What is function overloading?

• What is a case where function overloading is ambiguous?

• What are default arguments?

• Where must they appear in the function parameter list?
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Functions

• What is function overloading?

• What is a case where function overloading is ambiguous?

• What are default arguments?

• Where must they appear in the function parameter list?
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Same function name but different number or type of parameters

Different return types but same parameter types

Placeholder values that will be used if the caller does not specify a value

At the end of the parameter list



References and Pointers
• How do you declare a reference to another variable (char d)?

• How do you declare a pointer?

• How do you assign a pointer to point to an existing variable (d)?

• What are 2 ways to print the value in d?

• How do you print the value p points to?
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References and Pointers
• How do you declare a reference to another variable (char d)?

• How do you declare a pointer?

• How do you assign a pointer to point to an existing variable (d)?

• What are 2 ways to print the value in d?

• How do you print the value p points to?
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char& z = d;

char* p = NULL;

p = &d;

cout << d << endl;

cout << *p << endl;

cout << z << endl;



References versus Pointers
• Do not confuse "reference" (a data type) with "pass by 

reference" (something that happens when you call a function)
• Reference: an alias to some variable (permanent)
• int& r = s;
• Can assign new values to r (which is s), but cannot make r be an 

alias to another variable later
• Must be initialized when declared

• Pointer: stores the address of some variable
• int* p = &s;
• Can change what address p contains (where it points to) anytime
• Can be declared, then initialized later
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1-dimensional arrays
• How do you declare a static array (e.g., of shorts)?

• How do you print item at index 3 in an array?

• If you print the name of the array (cout << arr), what is 
displayed?

• If you dereference the array (*arr), what do you get?

• How do you pass an array to a function?
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1-dimensional arrays
• How do you declare a static array (e.g., of shorts)?

• How do you print item at index 3 in an array?

• If you print the name of the array (cout << arr), what is 
displayed?

• If you dereference the array (*arr), what do you get?

• How do you pass an array to a function?
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short array[4];

cout << array[3] << ednl;

Memory location (address) of first item (array[0])

Value of first item (array[0])

fn(array);



Dynamic memory allocation

• What is the difference between the stack and the heap?

• When would you use the heap?

• How do you allocate memory (e.g., an integer) from the heap?

• How do you free the memory for an integer on the heap?
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Dynamic memory allocation

• What is the difference between the stack and the heap?

• When would you use the heap?

• How do you allocate memory (e.g., an integer) from the heap?

• How do you free the memory for an integer on the heap?
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Stack is statically allocated (in advance); heap is dynamically allocated.

To allow memory consumption to grow and shrink as needed;
sizes (or numbers of items) are not known in advance.

int* d = new int;

delete d;



Dynamic memory allocation

• How do you allocate a 1-D array from the heap (e.g., short)?

• How do you free memory for a 1-D array on the heap?
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Dynamic memory allocation

• How do you allocate a 1-D array from the heap (e.g., short)?

• How do you free memory for a 1-D array on the heap?

2/26/2020 CS 161 24

short* array = new short[17];

delete [] array;



C-style strings
• What kind of array is a C-style string?
• What library do you #include to access C-style string functions?

• What special item must a C-style string have?  Why?

• cin >> c_string; reads user input and stops when?

• cin.getline(c_string, 10); reads how many characters 
from the user into c_string?
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C-style strings
• What kind of array is a C-style string?
• What library do you #include to access C-style string functions?

• What special item must a C-style string have?  Why?

• cin >> c_string; reads user input and stops when?

• cin.getline(c_string, 10); reads how many characters 
from the user into c_string?
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char[]

#include <cstring>

Null terminator ('\0' character), so functions know when string ends

Stops at first whitespace (space, tab, newline, etc.)

9 characters and adds the null terminator '\0' to make 10



2-dimensional arrays
• How do you declare a static 2-D array (e.g., 4x5 double)?

• This memory is laid out in row-major or column-major order?
• How do you allocate memory for a dynamic 2-D array?

• How do you free memory for a dynamic 2-D array?
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2-dimensional arrays
• How do you declare a static 2-D array (e.g., 4x5 double)?

• This memory is laid out in row-major or column-major order?
• How do you allocate memory for a dynamic 2-D array?

• How do you free memory for a dynamic 2-D array?
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double array[4][5];

Row-major

double** array = new double*[4];
for (int i=0; i<4; i++)
array[i] = new double[5];

for (int i=0; i<4; i++)
delete [] array[i];

delete [] array;
array = NULL;



2-dimensional arrays

• Given a 2-D (5x3) static array of ints, what type should be in 
the function definition to accept it?

• Given a 2-D (5x3) dynamic array of ints, what type should 
be in the function definition to accept it?
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2-dimensional arrays

• Given a 2-D (5x3) static array of ints, what type should be in 
the function definition to accept it?

• Given a 2-D (5x3) dynamic array of ints, what type should 
be in the function definition to accept it?
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void my_fun(int arr[][3]);
void my_fun(int arr[5][3]);

void my_fun(int** arr);
void my_fun(int* arr[]);



Structs and Recursion

• See practice questions on website
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Week 10 (and the course) nearly done!

q Proficiency demo -> Lab 10
q Review and study for the final exam
q Assignment 6 (due Saturday, March 14)

Hang in there – stay healthy and safe!
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