
COLLEGE OF ENGINEERING School of Electrical Engineering
and Computer Science

13/13/2020 CS 161

CS 161
Introduction to CS I

Lecture 29
The Virtual Edition

Tech Tips

• We will start at 2:00 p.m. (you can't hear me yet)

• Please mute your microphone.
To ask a question, click "raise hand".

• This meeting will be recorded. Hi! I'm still here J

Week 10 tips

• Proficiency demo: This has been converted to a regular lab,
with a score of 0, 1, or 10
• If you did not get a 10, your course grade will not be capped at 72%

as originally indicated
• There will be no in-person makeup proficiency exam (lab 10)

• Extra credit (for final exam): survey of course materials
(available on Canvas until midnight today)

3/13/2020 CS 161 2

Week 10 tips: Final exam

• Final exam: Monday, 3/16, 6-7:50 p.m., on Canvas
• All T/F and multiple choice (no short answer)
• You have 1 hour and 50 minutes from when you start,

up to 8:15 p.m. on 3/16
(extra time in case you have a delay getting started;
still only 1 hour 50 minutes for your exam)

• Canvas will auto-submit your exam if you are still working on it
at 8:15 p.m. on March 16

• I will have virtual office hours today via Zoom

3/13/2020 CS 161 3

Assignment 6 questions?

• Worth 80 points
• Worth doing if any previous assignment earned < 80 points
• Worth doing if you want practice with recursion J
• Goal: extend the train_car struct (linked list) to allow passengers

to board the train, then simulate a train journey

3/13/2020 CS 161 4

/* Structure defining a train car */
struct train_car {
string kind; /* Engine, regular car (_***_), or Caboose */

train_car* next_car; /* pointer to the next train car */
};

Final Exam Review Topics

• Data types and min/max ranges
• Expressions
• Operators
• Conditional statements
• Loops
• Random numbers
• Variable scope and shadowing

3/13/2020 CS 161 5

• Functions
• References
• Pointers
• 1-D arrays
• Dynamic memory allocation
• C-style strings
• 2-D arrays

Minimum and maximum values
Type Minimum Maximum
short (16 bits) -32,768 −𝟐𝒃"𝟏 +32,767 𝟐𝒃"𝟏 − 𝟏
unsigned short 0 0 65,535 𝟐𝒃 − 𝟏

int (32 bits) -2,147,483,648 +2,147,483,647
unsigned int 0 4,294,967,295
long (64 bits) -9,223,372,036,854,775,808 +9,223,372,036,854,775,807

unsigned long 0 18,446,744,073,709,551,615

float -3.4e38 3.4e38
double -1.8e308 1.8e308
1/13/2020 CS 161 6

From Midterm 1

• Data types and min/max ranges
• base types:
• signed vs. unsigned

• Expressions
• Parentheses: 12 / (3 + 1)
• Integer vs. floating point math:
(17–4) / 2 vs. (17–4) / 2.0

2/26/2020 CS 161 7

bool, char, short, int, long, float, double

From Midterm 1
• Operators
• Arithmetic: + - * / % ++ --
• Relational: < <= > >= == !=
• Logical: && || !
• Indexing: []
• Memory: &(address-of) *(deref)

.(member) ->(deref+member)
• Precedence

https://en.cppreference.com/w/cpp/lang
uage/operator_precedence

2/26/2020 CS 161 8

a++ a-- [] . ->
! ++a --a *p &a

* / %
+ -

< <= > >=

== !=
&&
||

= += -= *= /= %=

Operator precedence

https://en.cppreference.com/w/cpp/language/operator_precedence

From Midterm 1
• Conditional statements
• if-then
• switch
• break

• Loops
• for
• while
• do-while
• break
• When to use each?

2/26/2020 CS 161 9

From Midterm 1

• Random numbers
• Generate random numbers between 20 and 25 (inclusive)

• Generate random numbers between -3 and 5 (inclusive)

• Variable scope (visibility)
and shadowing

2/26/2020 CS 161 10

From Midterm 1

• Random numbers
• Generate random numbers between 20 and 25 (inclusive)

• Generate random numbers between -3 and 5 (inclusive)

• Variable scope (visibility)
and shadowing

2/26/2020 CS 161 11

rand()%6 + 20

rand()%9 - 3 int m = 3;
if (m > 0) {
int m = 43;
cout << m++ << endl;

}
cout << m << endl;

Functions

• Function declaration vs. definition?

• Parts of a function declaration/definition?

• How to call a function?

• Pass by value vs. pass by reference

2/26/2020 CS 161 12

Functions

• Function declaration vs. definition?

• Parts of a function declaration/definition?

• How to call a function?

• Pass by value vs. pass by reference

2/26/2020 CS 161 13

Declaration has return type, name, parameters; definition has code body

Return type, name, names and types of parameters

retval = fn_name(argument1, argument2, …);

Value: make a copy; reference: pass the address (can modify value)

Functions

• What is function overloading?

• What is a case where function overloading is ambiguous?

• What are default arguments?

• Where must they appear in the function parameter list?

2/26/2020 CS 161 14

Functions

• What is function overloading?

• What is a case where function overloading is ambiguous?

• What are default arguments?

• Where must they appear in the function parameter list?

2/26/2020 CS 161 15

Same function name but different number or type of parameters

Different return types but same parameter types

Placeholder values that will be used if the caller does not specify a value

At the end of the parameter list

References and Pointers
• How do you declare a reference to another variable (char d)?

• How do you declare a pointer?

• How do you assign a pointer to point to an existing variable (d)?

• What are 2 ways to print the value in d?

• How do you print the value p points to?

2/26/2020 CS 161 16

References and Pointers
• How do you declare a reference to another variable (char d)?

• How do you declare a pointer?

• How do you assign a pointer to point to an existing variable (d)?

• What are 2 ways to print the value in d?

• How do you print the value p points to?

2/26/2020 CS 161 17

char& z = d;

char* p = NULL;

p = &d;

cout << d << endl;

cout << *p << endl;

cout << z << endl;

References versus Pointers
• Do not confuse "reference" (a data type) with "pass by

reference" (something that happens when you call a function)
• Reference: an alias to some variable (permanent)
• int& r = s;
• Can assign new values to r (which is s), but cannot make r be an

alias to another variable later
• Must be initialized when declared

• Pointer: stores the address of some variable
• int* p = &s;
• Can change what address p contains (where it points to) anytime
• Can be declared, then initialized later

2/10/2020 CS 161 18

1-dimensional arrays
• How do you declare a static array (e.g., of shorts)?

• How do you print item at index 3 in an array?

• If you print the name of the array (cout << arr), what is
displayed?

• If you dereference the array (*arr), what do you get?

• How do you pass an array to a function?

2/26/2020 CS 161 1919

1-dimensional arrays
• How do you declare a static array (e.g., of shorts)?

• How do you print item at index 3 in an array?

• If you print the name of the array (cout << arr), what is
displayed?

• If you dereference the array (*arr), what do you get?

• How do you pass an array to a function?

2/26/2020 CS 161 2020

short array[4];

cout << array[3] << ednl;

Memory location (address) of first item (array[0])

Value of first item (array[0])

fn(array);

Dynamic memory allocation

• What is the difference between the stack and the heap?

• When would you use the heap?

• How do you allocate memory (e.g., an integer) from the heap?

• How do you free the memory for an integer on the heap?

2/26/2020 CS 161 21

Dynamic memory allocation

• What is the difference between the stack and the heap?

• When would you use the heap?

• How do you allocate memory (e.g., an integer) from the heap?

• How do you free the memory for an integer on the heap?

2/26/2020 CS 161 22

Stack is statically allocated (in advance); heap is dynamically allocated.

To allow memory consumption to grow and shrink as needed;
sizes (or numbers of items) are not known in advance.

int* d = new int;

delete d;

Dynamic memory allocation

• How do you allocate a 1-D array from the heap (e.g., short)?

• How do you free memory for a 1-D array on the heap?

2/26/2020 CS 161 23

Dynamic memory allocation

• How do you allocate a 1-D array from the heap (e.g., short)?

• How do you free memory for a 1-D array on the heap?

2/26/2020 CS 161 24

short* array = new short[17];

delete [] array;

C-style strings
• What kind of array is a C-style string?
• What library do you #include to access C-style string functions?

• What special item must a C-style string have? Why?

• cin >> c_string; reads user input and stops when?

• cin.getline(c_string, 10); reads how many characters
from the user into c_string?

2/26/2020 CS 161 25

C-style strings
• What kind of array is a C-style string?
• What library do you #include to access C-style string functions?

• What special item must a C-style string have? Why?

• cin >> c_string; reads user input and stops when?

• cin.getline(c_string, 10); reads how many characters
from the user into c_string?

2/26/2020 CS 161 26

char[]

#include <cstring>

Null terminator ('\0' character), so functions know when string ends

Stops at first whitespace (space, tab, newline, etc.)

9 characters and adds the null terminator '\0' to make 10

2-dimensional arrays
• How do you declare a static 2-D array (e.g., 4x5 double)?

• This memory is laid out in row-major or column-major order?
• How do you allocate memory for a dynamic 2-D array?

• How do you free memory for a dynamic 2-D array?

2/26/2020 CS 161 27

2-dimensional arrays
• How do you declare a static 2-D array (e.g., 4x5 double)?

• This memory is laid out in row-major or column-major order?
• How do you allocate memory for a dynamic 2-D array?

• How do you free memory for a dynamic 2-D array?

2/26/2020 CS 161 28

double array[4][5];

Row-major

double** array = new double*[4];
for (int i=0; i<4; i++)
array[i] = new double[5];

for (int i=0; i<4; i++)
delete [] array[i];

delete [] array;
array = NULL;

2-dimensional arrays

• Given a 2-D (5x3) static array of ints, what type should be in
the function definition to accept it?

• Given a 2-D (5x3) dynamic array of ints, what type should
be in the function definition to accept it?

2/26/2020 CS 161 29

2-dimensional arrays

• Given a 2-D (5x3) static array of ints, what type should be in
the function definition to accept it?

• Given a 2-D (5x3) dynamic array of ints, what type should
be in the function definition to accept it?

2/26/2020 CS 161 30

void my_fun(int arr[][3]);
void my_fun(int arr[5][3]);

void my_fun(int** arr);
void my_fun(int* arr[]);

Structs and Recursion

• See practice questions on website

3/13/2020 CS 161 31

Week 10 (and the course) nearly done!

q Proficiency demo -> Lab 10
q Review and study for the final exam
q Assignment 6 (due Saturday, March 14)

Hang in there – stay healthy and safe!

3/13/2020 CS 161 32

