CS 261-020
Data Structures
Lecture 10
BST Operations, Complexity & Traversal
2/8/22, Tuesday
Odds and Ends

• Recitation 6 posted

• Assignment 3 Rubrics posted

• Don’t forget to demo your assignment 2!
Lecture Topics:

• BST Operations:
 • Finding an element
 • Inserting a new element
 • Removing an element

• Runtime Complexity of BST operations
• BST traversals
BST Operations

• *Remember:*
 • when a given node *does not have a subtree* on either the left or right side, the node’s child on that side will be NULL.
 • a leaf node in a BST is one where both the left and right child are NULL.
BST Operations: Finding an element

• Elements in a BST are located based on their keys
 • When a user wants to locate an element, they will need to provide the key of the element

• How does it work?
 • Keep a pointer to the current node N, starting at the root. Examining one node at a time
 • If N is NULL, the key \(k \) doesn’t exist in the tree, and the search has failed. Break.
 • If N’s key is equal to \(k \), the search has succeeded. Break.
 • If \(k \) is less than N’s key, move the current node to point to its left child and repeat.
 • If \(k \) is greater than N’s key, move the current node to point to its right child and repeat.
BST Operations: Finding an element

• Pseudocode: iteration

find(bst, k_q){
 N = bst.root
 while N is not NULL{
 if N.key equals k_q
 return success
 else if k_q < N.key
 N = N.left
 else:
 N = N.right
 }
 return failure
}

• Example: search for key 17
BST Operations: Inserting a new element

• New elements are always inserted into a BST as leaves.
 • avoid to restructure the tree

• Key: find the location for the new element that maintains the BST property at all nodes in the tree.

• find the location ➔ using search/find function!
 • Instead of stopping the search if/when k is found in the tree, insertion always proceeds until reaching a NULL node
 • The location of this NULL node, then, is the location at which to insert the new node
 • The new node will become the child of the NULL node’s parent
BST Operations: Inserting a new element

• Pseudocode:

```plaintext
insert(bst, k, v){
    P = NULL
    N = bst.root
    while N is not NULL{
        P = N
        if k < N.key:
            N = N.left
        else:
            N = N.right
    }
    create a new node as the child of P containing k, v
}
```

• P is used to track the location of the new node’s parent
• if P is NULL at the end of the search here, then the BST is empty, and the new node should be inserted as the root of the tree
• If P is not NULL, then the new node will be inserted as either the left or right child of P, depending on whether k is less than or greater than (or equal to) P’s key
BST Operations: Inserting a new element

• Pseudocode:

```c
insert(bst, k, v) {
    P = NULL
    N = bst.root
    while N is not NULL{
        P = N
        if k < N.key:
            N = N.left
        else:
            N = N.right
    }
    create a new node as the child of P containing k, v
}
```

• Example: insert the key 40
BST Operations: Removing an element

- How to remove the element with a key 2?
 - Easy! Simply remove it since it is a leaf node

- How to remove the element with a key 64?
 - Umm, then which node should be our new root, so it maintains BST after removal?
BST Operations: Removing an element

• BST removal: depend on the number of children that element’s BST node has

• If the element to be removed is a leaf node: (i.e., 2)
 • simply free that node and update its parent to have a NULL child

• If the element to be removed is stored in a node with just a single child: (i.e., 72)
 • simply free that node and move its child to become a child of the node’s parent
BST Operations: Removing an element

• If the element to be removed is stored in a node with two children: (i.e., 64):
 • need to find that node’s in-order successor (the next node in in-order traversal of the BST).

• Line up all keys in ascending order:
 • 2 10 17 30 32 64 72 73 75 77 90

• The in-order successor for a node with key k, is the node to the very next key after k in this ordered list of keys
 • i.e., the in-order successor of root (64) is the node with key 72
BST Operations: Removing an element

• If the element to be removed is stored in a node with two children: (i.e., 64):

 • In BST, a node N’s in-order successor is always the leftmost node in N’s right subtree.
 • branch right in the tree from N, and then continue to branch left until we can no longer do so, The last node we reach will be N’s in-order successor
BST Operations: Removing an element

- If the element to be removed is stored in a node with two children: (i.e., 64):
 - Denote N’s parent node as P_N (if N is the root node, P_N will represent the root pointer for the entire tree)
 - Find N’s in-order successor S. Denote S’s parent node as P_S.
 - Update pointers to give N’s children to S
 - N’s left child becomes S’s left child.
 - S’s right child (which might be NULL) becomes P_S’s left child.
 - N’s right child becomes S’s right child.
 - Update P_N to replace N with S.
 - Specifically, S becomes P_N’s left or right child, as appropriate, or the root of the tree, if N was the root.
 - Free the node N.
BST Operations: Removing an element

- If the element to be removed is stored in a node with two children: (i.e., 64):

Before removing N

After removing N
BST Operations: Removing an element

• Pseudocode:

```pseudocode
remove(bst, k):
  N, P_N ← find the node to be removed and its parent based on key k, as in the find() function
  if N has no children:
    update P_N to point to NULL instead of N
  else if N has one child:
    update P_N to point to N’s child instead of N
  else:
    S, P_S ← find N’s in-order successor and its parent, as described above
    S.left ← N.left
    if S is not N.right:
      P_S.left ← S.right
      S.right ← N.right
    update P_N to point to S instead of N
  free N
```
BST Operations: Removing an element

• Example: Remove the root node (64)
BST Operations: Removing an element

• Example: Remove the root node (64)
 • 1. identify that node’s in-order successor (S) and its parent (P_S):
BST Operations: Removing an element

• Example: Remove the root node (64)
 • 2. update pointers so that S replaces N and S’s right child replaces S as P_S’s child:
BST Operations: Removing an element

• Example: Remove the root node (64)
 • 3. The end result is a tree with the root node (i.e. N) removed.

• note that the BST property is maintained by this removal:
Lecture Topics:

• BST Operations:
 • Finding an element
 • Inserting a new element
 • Removing an element

• Runtime Complexity of BST operations
• BST traversals
Runtime Complexity of BST Operations

• Main factor of all 3 BST operations: search within the tree
 • find(): search for the query key
 • insert(): search for the location at which to insert
 • remove(): search for both query key and its in-order successor

• Search begins at the root, moves down one level at each iteration, until reaches the bottom (or finds the node it is searching for)
 • Number of search iteration == the height of the tree, h

• Thus, runtime complexity for searching in all 3 operations: O(h)
Runtime Complexity of BST Operations

- Extra work done besides searching:
 - `find()`: none
 - `insert()`: allocate the new node, and update its new parent \(\rightarrow O(1)\)
 - `remove()`: update a few pointers \(\rightarrow O(1)\)

- Thus, the runtime complexity:
 - `find()` – \(O(h)\)
 - `insert()` – \(O(h)\)
 - `remove()` – \(O(h)\)

- What **is the range of** \(h\) **if the BST has** \(n\) **nodes?**
 - Depending on the order of insertion, \(h\) can be \([\log(n), n]\)

\(\rightarrow\) limit the height of the BST! (more later)
Lecture Topics:

• BST Operations:
 • Finding an element
 • Inserting a new element
 • Removing an element

• Runtime Complexity of BST operations

• BST traversals
Binary Tree Traversal

• How to print the value stored at each node in a binary tree?

• **A tree traversal**: a method for visiting each node in a tree exactly once and performing some operation or processing at each node when it’s visited.
Binary Tree Traversal

• Two types of tree traversal:
 • **Depth-first**: explores a tree subtree by subtree, visiting all of a node’s descendants before visiting any of its siblings.
 • moves as far **downward** in the tree as it can go before moving across in the tree
 • **Breadth-first**: explores a tree level by level, visiting every node at a given depth in the tree before moving downward
 • moves as far **across** the tree as it can go before moving down in the tree
Binary Tree Traversal: Depth-first

• Denote using N, L, and R:
 • N – visit/process the current node itself
 • L – traverse the left subtree of the current node
 • R – traverse the right subtree of the current node

• Three kinds of depth-first traversal:
 • **Pre-order traversal** (NLR): process the current node before traversing either of its subtrees
 • **In-order traversal** (LNR): traverse the current node’s left subtree before processing the node itself, and then traverse the node’s right subtree
 • **Post-order traversal** (LRN): traverse both of the current node’s subtrees (left, then right) before processing the node itself
Binary Tree Traversal: Depth-first

• Three kinds of depth-first traversal:
 • Pre-order traversal (NLR)
 • 64 30 10 2 17 32 75 72 73 77 90
 • In-order traversal (LNR)
 • 2 10 17 30 32 64 72 73 75 77 90
 • Post-order traversal (LRN)
 • 2 17 10 32 30 73 72 90 77 75 64

• Note: in-order traversal processes the nodes in sorted order!
Binary Tree Traversal: Depth-first

- Pseudocode of three kinds of depth-first traversal: using recursion
 - Pre-order traversal (NLR)
 \[
 \text{preOrder}(N): \\
 \quad \text{if } N \text{ is not NULL:} \\
 \quad \quad \text{process } N \\
 \quad \text{preOrder}(N.\text{left}) \\
 \quad \text{preOrder}(N.\text{right})
 \]

 - In-order traversal (LNR)
 \[
 \text{inOrder}(N): \\
 \quad \text{if } N \text{ is not NULL:} \\
 \quad \quad \text{inOrder}(N.\text{left}) \\
 \quad \quad \text{process } N \\
 \quad \quad \text{inOrder}(N.\text{right})
 \]

 - Post-order traversal (LRN)
 \[
 \text{postOrder}(N): \\
 \quad \text{if } N \text{ is not NULL:} \\
 \quad \quad \text{preOrder}(N.\text{left}) \\
 \quad \quad \text{preOrder}(N.\text{right}) \\
 \quad \quad \text{process } N
 \]
Binary Tree Traversal: Breadth-first

• One main kind of breadth-first traversal: **level-order traversal**

• Using a level-order traversal, the nodes are processed in this order: 64, 32, 80, 16, 48, 72, 88, 56, 84, 96.
Binary Tree Traversal: Breadth-first

• Pseudocode of level-order traversal: using a queue

 levelOrder(bst):
 q = new, empty queue
 enqueue(q, bst.root)
 while q is not empty:
 N = dequeue(q)
 if N is not NULL:
 process N
 enqueue(q, N.left)
 enqueue(q, N.right)