Odds and Ends

• Recitation 7 posted

• Assignment 3 demo starts!
Lecture Topics:

• AVL Trees
Height Balance

- **Height Balance**: a measurable form of BST balance

- A BST is **height balanced** if, at every node in the tree, the subtree heights of the node’s left and right subtrees differ by at most 1

- A height-balanced BST is guaranteed to have an overall height that’s within a constant factor of $\log(n)$
 - operations in a height-balanced BST are guaranteed to have $O(\log n)$ runtime complexity.
Balance Factor

• A BST node’s balance factor – a metric to figure out whether the subtree rooted at that node is height balanced.

• the balance factor of the node N:
 • balanceFactor(N) = \text{height}(N.\text{right}) - \text{height}(N.\text{left})

• the height of a NULL node (i.e. an empty subtree) is -1
Balance Factor

• An entire BST is *height balanced* if every node in the tree has a balance factor of -1, 0, or 1

• If a node has a **negative balance factor** (i.e. balanceFactor(N) < 0), we call it *left-heavy*

• If a node has a **positive balance factor** (i.e. balanceFactor(N) > 0), we call it *right-heavy*
How to rotate?

• A rotation (i.e. single or double) will be needed any time an insertion into or removal from an AVL tree that leaves the tree (temporarily) with a node whose balance factor is either -2 or 2

• In other words, a rotation is needed when height balance is lost at a specific node in the tree. Let’s call this node N.

• If N has a balance factor of -2, this means N is left-heavy.
• If N has a balance factor of 2, this means N is right-heavy.
• Regardless of the direction of N’s heaviness, let’s refer to the heavier of N’s children as C

• The node C itself will have a balance factor of -1, 0, or 1
In class activity: How to rotate?

• Get into small groups, on the worksheet, for each unbalanced tree,
 • Determine whether a single rotation / a double rotation is needed
 • draw the height-balanced BSTs after rotating

• Can you generalize the situations when a single rotation is needed?

• Can you generalize the situations when a double rotation is needed?
In class activity: How to rotate?

Center: 3
rotate right

Single rotation
In class activity: How to rotate?

Center: 32
Rotate left

Single rotation
In class activity: How to rotate?

1st rotation
center: 32
rotate left

2nd rotation
center: 96
rotate right
In class activity: How to rotate?

1st:
- center: 8
- rotate right

2nd:
- center: 6
- rotate left
In class activity: How to rotate?
Single vs. Double Rotation

- If N and C are heavy in the same direction, then a single rotation is needed around N in the opposite direction as N’s heaviness.
Single vs. Double Rotation

- If \(N\) and \(C\) are heavy in opposite directions, then a double rotation is needed
 - If \(N\) is left-heavy and \(C\) is right-heavy, then we first rotate left around \(C\) then right around \(N\).
 - If \(N\) is right-heavy and \(C\) is left-heavy, then we first rotate right around \(C\) then left around \(N\).

![Diagram of single rotation](image1)

![Diagram of double rotation](image2)
Single vs. Double Rotation

<table>
<thead>
<tr>
<th>balanceFactor(N)</th>
<th>balanceFactor(C)</th>
<th>2 (right-heavy)</th>
<th>0</th>
<th>-2 (left-heavy)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Left-left imbalance</td>
<td>-1 (left-heavy)</td>
<td>Single rotation:</td>
<td>Right-left imbalance</td>
<td>Right-right imbalance</td>
</tr>
<tr>
<td></td>
<td></td>
<td>right around N</td>
<td>Double rotation:</td>
<td>Single rotation:</td>
</tr>
<tr>
<td>Left-right imbalance</td>
<td>1 (right-heavy)</td>
<td>Double rotation:</td>
<td>1. right around C</td>
<td>left around N</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2. left around N</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Left-right imbalance:
- Double rotation: 1. right around C 2. left around N

Right-right imbalance:
- Single rotation: left around N
Single Rotations

• Recall: a single rotation is needed if \(N \) and \(C \) are heavy in the same direction.

• Single rotation: always centered around the node \(N \) (where height balance is lost), and the rotation is in the opposite direction of the imbalance.

• Two situations:
 • **Left-left imbalance** – \(N \) is left-heavy and \(N \)’s left child \(C \) is also left-heavy
 • Cause: insert an element into \(C \)’s left subtree OR remove an element from \(N \)’s right subtree
 • To fix: apply a single **right** rotation around \(N \).

 • **Right-right imbalance** – \(N \) is right-heavy and \(N \)’s right child \(C \) is also right-heavy
 • Cause: insert an element into \(C \)’s right subtree OR remove an element from \(N \)’s left subtree
 • To fix: apply a single **left** rotation around \(N \).
Single Rotations

- Visualize a single right rotation:

 - In a right rotation around N:
 - N will become the right child of its current left child C.
 - C’s current right child will become N’s left child.
 - If N has a parent P_N, then C will replace N as P_N’s child. Otherwise, if N was the root of the entire tree, C will replace N as the root.
Double Rotations

• Recall: a double rotation is needed if \(N \) and \(C \) are heavy in the opposite direction.

• A double rotation consists of two single rotations:
 • The first one is always centered around \(N \’ s \) child \(C \) (align imbalances on the same side)
 • The second is always centered around \(N \) itself (where height balance is lost)

• Two situations:
 • \textbf{Left-right imbalance} – \(N \) is left-heavy and \(N \’ s \) left child \(C \) is right-heavy
 • Cause: insert an element into \(C \’ s \) right subtree OR remove an element from \(N \’ s \) right subtree
 • To fix: apply a \textit{left rotation around} \(C \) followed by a \textit{right rotation around} \(N \)

 • \textbf{Right-left imbalance} – \(N \) is right-heavy and \(N \’ s \) right child \(C \) is left-heavy
 • Cause: insert an element into \(C \’ s \) left subtree OR remove an element from \(N \’ s \) left subtree
 • To fix: apply a \textit{right rotation around} \(C \) followed by a \textit{left rotation around} \(N \)
Double Rotations

• Example:
Double Rotations

- Visualize a left-right imbalance:
 - First rotation: Center around C, opposite direction of C’s imbalance, i.e., a left rotation around C:
 - G moves up in the tree to replace C as N’s left child.
 - C moves down in the tree to become G’s left child.
 - L_G becomes C’s right child.
Double Rotations

• Visualize a left-right imbalance:

• Second rotation: Center around N, opposite direction of G's imbalance, i.e., a right rotation around N:
 • G moves up in the tree to become the new root of this subtree
 • N moves down in the tree to become G’s right child.
 • If N had a parent, P_N, G would replace N as the child of P_N. If N was the root of the entire tree, G would become the new root
Double Rotations

• Visualize a left-right imbalance:
AVL Tree operations

• Note: an AVL tree will only ever need to be rebalanced in response to an operation that changes the structure of the tree
 • i.e. after inserting a new element or removing an element

• Rebalancing an AVL tree is a bottom-up operation
 • begins at the location in the tree where its structure was changed, and proceeds upwards from that location towards the root
AVL Tree operations

• Need a mechanism to retrace a path *upwards* from a given node back to the root

• How: by adding a pointer to the AVL tree node structure that *points to the node’s parent*
 • Then, retracing the path upwards from a node to the tree’s root is as simple as following these parent pointers up the tree

• Add an additional field that allows us to track the *height of* the subtree rooted at each node.
  ```c
  struct avl_node {
    int key;
    void* value;
    int height;
    struct avl_node* left;
    struct avl_node* right;
    struct avl_node* parent;
  };
  ```
 • When a node doesn’t have a parent, parent = NULL.
 • Specifically, the root node of the tree will always have a NULL parent pointer
AVL Tree operations

- Pseudocode for a right rotation:
 - `rotateRight(N):`
 - `C ← N.left`
 - `N.left ← C.right`
 - `if N.left is not NULL: N.left.parent ← N`
 - `C.right ← N`
 - `N.parent ← C`
 - `updateHeight(N)`
 - `updateHeight(C)`
 - `return C`
AVL Tree operations

• Pseudocode for a left rotation:

```
rotateLeft(N):
    C ← N.right
    N.right ← C.left
    if N.right is not NULL:
        N.right.parent ← N
    C.left ← N
    N.parent ← C
    updateHeight(N)
    updateHeight(C)
    return C
```

```
updateHeight(N):
    N.height ← MAX(height(N.left), height(N.right)) + 1
```
AVL Tree operations

• How these pieces work:
 • Rotating left or right around a given node: simply involves trading a few pointers.
 • After every rotation, re-compute the subtree heights for both the node that moved downwards during the rotation (i.e. N) and the node that moved upwards during the rotation (i.e. C).
AVL Tree operations

• pseudocode for the insert operation:

 \[
 \text{avlInsert}(\text{tree, key, value}): \\
 \begin{align*}
 \text{insert key, value into tree like normal BST insertion} \\
 \text{N ← newly inserted node} \hspace{1cm} \text{P ← N.parent} \\
 \text{while P is not NULL:} \\
 \text{rebalance(P)} \hspace{1cm} \text{P ← P.parent}
 \end{align*}
 \]

• pseudocode for the remove operation:

 \[
 \text{avlRemove(tree, key)}: \\
 \begin{align*}
 \text{remove key from tree like normal BST removal} \\
 \text{P ← lowest modified node (e.g. parent of removed node)} \\
 \text{while P is not NULL:} \\
 \text{rebalance(P)} \hspace{1cm} \text{P ← P.parent}
 \end{align*}
 \]

The key piece: rebalance() function, which performs rebalancing at each node:
AVL Tree operations

• Pseudocode for rebalance():

 rebalance(N):
 if balanceFactor(N) < -1:
 if balanceFactor(N.left) > 0:
 N.left ← rotateLeft(N.left)
 N.left.parent ← N
 newSubtreeRoot ← rotateRight(N)
 newSubtreeRoot.parent ← N.parent
 N.parent.left or N.parent.right ← newSubtreeRoot
 else if balanceFactor(N) > 1:
 if balanceFactor(N.right) < 0:
 N.right ← rotateRight(N.right)
 N.right.parent ← N
 newSubtreeRoot ← rotateLeft(N)
 newSubtreeRoot.parent ← N.parent
 N.parent.left or N.parent.right ← newSubtreeRoot
 else:
 updateHeight(N)
Runtime Complexity of AVL Tree operations

• Single rotation (rotateLeft() and rotateRight()):
 • A limited number of pointers is updated
 • The height of two nodes is updated
 • Thus, $O(1)$

• rebalance() :
 • For each call, at most two rotations.
 • Thus, $O(1)$

• How many times will rebalance() be called?
 • once per node on a traversal upwards to the root of the tree
 • Thus, the maximum number of times rebalance() can be called is h (height of the tree)

• If a tree is height balanced, then $h = \log(n)$. Thus, the AVL tree’s insert and remove operations each have overall complexity of $O(h) = O(\log n)$