Odds and Ends

• Recitation 9 posted

• Sign up for Assignment 4 demo!!!
Review: Hash Tables

• A hash table is like an array (storing key/value structs), with a few important differences:
 • Elements can be indexed by values other than integers.
 • More than one element may share an index. (More later)

Key → Hash function → integer

\[
\text{hash} = \text{hash_function}(\text{key}) \\
\text{index} = \text{hash} \mod \text{array_size}
\]
Review: Hash Tables

• When choosing or designing a hash function, there are a few properties that are desirable:
 • **Determinism** – a given input should always map to the same hash value.
 • **Uniformity** – the inputs should be mapped as evenly as possible over the output range.
 • A non-uniform function can result in many collisions, where multiple elements are hashed to the same array index. (More later).
 • **Speed** – the function should have low computational burden
Review: Perfect and Minimally Perfect Hash Functions

• **Collision**: some keys map to the same index:
 • \(x \neq y, \text{ but } \text{hash}(x) = \text{hash}(y) \)

• A **perfect hash function** is one that results in no collisions.

• A **minimally perfect hash function** is one that results in no collisions for a table size that exactly equals the number of elements.
Collision Resolution

Two mechanisms for resolving hash collisions

• Chaining
• Open addressing
Find Ram, 280 Mod 11 + 1

myData = Array(5)
1. Collision Resolution with Chaining

• Here’s what a hash table with linked list-based chains might look like:
1. Collision Resolution with Chaining

- **Load factor**: the average number of elements in each bucket:
 \[\lambda = \frac{n}{m} \]
 - \(n \) is the total number of elements stored in the table
 - \(m \) is the number of buckets
 - \(\lambda \) is the load factor

- In a chained hash table, the load factor can be greater than 1.

- As the load factor increases, operations on the table will slow down.

- For a linked list-based chained table,
 - For **successful** searches, the average number of links traversed is \(\lambda / 2 \).
 - For **unsuccessful** searches, the average number of links traversed is \(\lambda \).
1. Collision Resolution with Chaining

- How to maintain the performance of the hash table?

 • **Double the number of buckets** when the load factor reaches a certain limit (e.g. 8).

 • In other words, the hash table array could be implemented with a dynamic array whose resizing behavior is based on the load factor.

- How would we actually perform the resize?

 • **Re-compute the hash function for each element** with the new number of buckets (i.e. using mod operator (%)).
1. Collision Resolution with Chaining

• What is the **best-case complexity** of a linked list-based chained hash table?
 • Assume that the hash function has a good distribution.
 • If the number of buckets is great than or equal to number of buckets, i.e.: m >= n
 • Then, $O(1)$

• What is the **worst-case complexity** of a linked list-based chained hash table?
 • $O(n)$, since all of the elements might end up in the same bucket.
1. Collision Resolution with Chaining

• What is the **average-case complexity** of a linked list-based chained hash table?
 • Assume that the hash function has a good distribution.
 • The average case for all operations is $O(\lambda)$.
 • If the number of buckets is adjusted according to the load factor, then the number of elements is a constant factor of the number of buckets, i.e.:
 \[
 \lambda = \frac{n}{m} = \frac{o(m)}{m} = O(1)
 \]
 • In other words, the average case performance of all operations can be kept to constant time.
2. Collision Resolution with Open Addressing

• The open addressing method: **probing** for an empty spot
 • **Probing**: the process of searching for an empty position.

• When using open addressing, all hashed elements are stored directly in the hash table array
2. Collision Resolution with Open Addressing

• For example, using linear probing, the key "beyonce" would be inserted at index 7, even though the hash function evaluates to 4 for that key:
2. Collision Resolution with Open Addressing

• What about searching after removing?
 • This could disrupt probing for elements after it.
• For example, what if we removed "jon" and then searched for "beyonce"?
2. Collision Resolution with Open Addressing

• To get around this problem, we use a special value known as the **tombstone**

• Now, when an element is removed, we insert the tombstone value.
 • This value can be replaced when adding a new entry, but it doesn’t halt search for an existing element.

• With a tombstone value __TS__ inserted for the removed "jon", the search above for "beyonce" could proceed as normal:
2. Collision Resolution with Open Addressing

• One problem: clustering, where elements are placed into the table into clusters of adjacent indices.

• For example, using linear probing, the probability of a new entry being added to an existing cluster increases as the size of the cluster increases.

• larger cluster → more collision
2. Collision Resolution with Open Addressing

• How to reduce clustering?
• By using quadratic probing and especially double hashing

• Using open addressing, a table’s load factor cannot exceed 1.

• low load factor \rightarrow avoid collisions
• low load factor \rightarrow a lot of unused space

• In other words, there is a tradeoff between speed and space with open addressing.
2. Collision Resolution with Open Addressing

What is the complexity of open addressing? (Assuming truly uniform hashing)

• To insert a given item into the table (that’s not already there):
 • the probability \(p \) that the first probe is successful is

\[
p = \frac{m - n}{m}
\]

• There are \(m \) total slots and \(n \) filled slots, so \(m - n \) open spots.
2. Collision Resolution with Open Addressing

What is the complexity of open addressing? (Assuming truly uniform hashing)

• If the first probe fails, the probability that the second probe succeeds is

\[
\frac{m-n}{m-1} \geq \frac{m-n}{m} = p
\]

• There are still \(m - n \) remaining open slots, but now we only have a total of \(m - 1 \) slots to look at, since we’ve examined one already.
2. Collision Resolution with Open Addressing

What is the complexity of open addressing? (Assuming truly uniform hashing)

• If the first two probes fail, the probability that the third probe succeeds is

\[
\frac{m-n}{m-2} \geq \frac{m-n}{m} = p
\]

• There are still m - n remaining open slots, but now we only have a total of m - 2 slots to look at, since we’ve examined two already.

• And so forth. In other words, for each probe, the probability of success is at least p
2. Collision Resolution with Open Addressing

What is the complexity of open addressing? (Assuming truly uniform hashing)

• The expected number of probes until success is: (a geometric distribution)

$$\frac{1}{p} = \frac{1}{m-n} = \frac{1}{1-\frac{n}{m}} = \frac{1}{1-\lambda}$$

• In other words, the expected number of probes for any given operation is $O\left(\frac{1}{1-\lambda}\right)$.
Collision Resolution with Open Addressing

The expected number of probes for any given operation is $O\left(\frac{1}{1-\lambda}\right)$.

- If we limit the load factor to a constant and reasonably small number, our operations will be $O(1)$ on average.
- E.g. if we have $\lambda = 0.75$, then we would expect 4 probes, on average. For $\lambda = 0.9$, we would expect 10 probes.