CS 261-020
Data Structures

Lecture 17
Additional Topics
3/8/22, Tuesday
Odds and Ends

• Assignment 5 rubrics will be posted by tonight

• Recitation 10
 • Go to your registered section
 • Cannot make up!
 • Implement a singly linked list and its basic functionalities using laptop provided
Assignment 5 Q&A
*Additional Topics

• Sets ADT and its implementation

• *Will not be on the final
Set

- **Set** – An ADT that can store *unique values*, *without any particular order*.
- **Unique** → no duplicates
- **Unordered** → cannot access items using index values

- Array: [1, 1, 2, 2, 3, 4, 1, 5, 8, 7]
- Set: {1, 2, 3, 4, 5, 8, 7} ← Note: no duplicates

- Why using set?
 - Check if a specific element is *contained* in the set
Set Operations

• The idea of a Set has been translated directly from mathematics into programming languages.
 • Such as in Python

• Basic operations:
 • `contains()` – search for a specific element and see if it is contained in the set
 • `add()` – add an element into the set
 • `remove()` – remove an element from the set
Set Operations

• More operations:
 • `union()` – return the union of two sets
 • Example:
 • A = \{2, 5, 7\}
 • B = \{1, 2, 5, 8\}
 • Then A Union B (A U B) = \{1, 2, 5, 8\}

• In Python:

```python
A = \{\texttt{\string'\textcolor{red}{red}', \string'\textcolor{green}{green}', \string'\textcolor{blue}{blue}'\}\}
B = \{\texttt{\string'\textcolor{yellow}{yellow}', \string'\textcolor{red}{red}', \string'\textcolor{orange}{orange}'\}\}
# by operator
print(A | B)
# by method
print(A.union(B))
```

Set Operations

• More operations:
 • `intersection()` – return the intersection of two sets
 • Example:
 • A = {2, 5, 7}
 • B = {1, 2, 5, 8}
 • Then A intersects B (A ∩ B) = {2, 5}

• In Python:

```python
A = {'red', 'green', 'blue'}
B = {'yellow', 'red', 'orange'}

# by operator
print(A & B)
# Prints {'red'}

# by method
print(A.intersection(B))
# Prints {'red'}
```
Set Operations

• More operations:
 • `difference()` – return the difference of two sets
 • Example:
 • \(A = \{2, 5, 7\} \)
 • \(B = \{1, 2, 5, 8\} \)
 • Then Set difference of \(A \) and \(B \) \((A - B) = \{7\} \)

• In Python:
  ```python
  A = {'red', 'green', 'blue'}
  B = {'yellow', 'red', 'orange'}
  # by operator
  print(A - B)
  # Prints {'blue', 'green'}
  # by method
  print(A.difference(B))
  # Prints {'blue', 'green'}
  ```
Set Operations

• More operations:
 • `symmetric_difference()` – return the set of all elements in either A or B, but not both
 • Example:
 • A = \{2, 5, 7\}
 • B = \{1, 2, 5, 8\}
 • Then Set difference of A and B (A \^ B) = \{7, 1, 8\}

• In Python:

```python
A = \{'red', 'green', 'blue'\}
B = \{'yellow', 'red', 'orange'\}
# by operator
print(A - B)
# Prints \{'blue', 'green'\}
# by method
print(A.difference(B))
# Prints \{'blue', 'green'\}
```
Set Implementation

• Multiple ways of implementing a set ADT
 • Hash-based approach
 • Tree-based approach
Set Implementation: Using a Hash Table

• The underlying data structure is a hash table
 Key (element) \rightarrow Hash Function \rightarrow Index

• Use either chaining or open addressing to resolve collisions
Set Implementation: Using a Hash Table

• `contains()` – search for an element and see if it is contained in the set

• Similar to the `lookup()` in the hash table:
 • Take the element (key)
 • Apply the hash function, and get the index
 • Access

• Complexity: $O(1)$
Set Implementation: Using a Hash Table

• *add()* – add an element into the set

• Similar to the insert() in the hash table:
 • Take the element (key)
 • Apply the hash function, and get the index
 • Insert
 • Resize and rehash if needed
 • Resolve collision if needed

• Complexity: avg. O(1)
Set Implementation: Using a Hash Table

• `remove()` – remove an element from the set

• Similar to the `remove()` in the hash table:
 • Take the element (key)
 • Apply the hash function, and get the index
 • Remove
 • Add dummy node (tombstone) if needed

• Complexity: $O(1)$
Set Implementation: Using a Hash Table

• \textit{union(set A, set B)} – return the union of two sets

• Procedure:
 • Create an empty set, say S
 • Add all elements of A into S
 • Add all elements of B into S
 • Return S
 • *Note: since hash table cannot have duplicate keys, it handles “no duplicates” rule in Sets

• Complexity: \(O(\text{size}(A) + \text{size}(B))\)
Set Implementation: Using a Hash Table

• intersection(set A, set B) – return the intersection of two sets

• Procedure:
 • Create an empty set, say S
 • Loop through each element A_i in set A
 • If A_i is in B (by calling contains())
 • Add A_i into S
 • Return S

• Complexity: $O(\min(\text{size}(A), \text{size}(B)))$
Set Implementation: Using a Hash Table

• *difference*(set A, set B) – return the difference of two sets
 • in this case: A - B

• Procedure:
 • Create an empty set, say S
 • Loop through each element Aᵢ in set A
 • If Aᵢ is NOT in B (by calling contains())
 • Add Aᵢ into S
 • Return S

• Complexity: \(O(\text{size}(A)) \)
Set Implementation: Using a Hash Table

- *symmetric_difference(set A, set B)* – return the symmetric difference of two sets

- Procedure:
 - Create an empty set, say S
 - Loop through each element A_i in set A
 - If A_i is NOT in B (by calling contains())
 - Add A_i into S
 - Loop through each element B_i in set B
 - If B_i is NOT in A (by calling contains())
 - Add B_i into S
 - Return S

- Complexity: $O(size(A)+size(B))$
Set Implementation: Using a Hash Table

• Example Set Implementation in C using hash table:
 • https://github.com/barrust/set
Set Implementation: Using a Tree

• The underlying data structure is a self-balancing tree:
 • AVL Tree
 • Red-black tree
Set Implementation: Using a Tree

• `contains()` – search for an element and see if it is contained in the set
• `add()` – add an element into the set
• `remove()` – remove an element from the set

• Similar to AVL tree’s `lookup()`, `insert()`, and `remove()`

• Complexity: $O(\log n)$ where n is the number of element in the set
Set Implementation: Using a Tree

- **union(set A, set B)** – return the union of two sets

Procedure:
- Create an empty set S
- Insert all elements of A into S → n elements, each takes $O(\log n)$, so $O(n\log n)$
- For each element B_i in B:
 - If S contains B_i, skip
 - Else, insert B_i into S
- Return S
Set Implementation: Using a Tree

- **intersection(set A, set B)** – return the intersection of two sets

Procedure:
- Create an empty set, say S
- Loop through each element \(A_i \) in set A
 - If B contains \(A_i \)
 - Insert \(A_i \) into S
- Return S
Set Implementation: Using a Tree

• `difference(set A, set B)` – return the difference of two sets
 • in this case: A - B

• Procedure:
 • Create an empty set, say S
 • Loop through each element A_i in set A
 • If A_i is NOT in B (by calling `contains()`)
 • Insert A_i into S
 • Return S
Set Implementation: Using a Hash Table

• `symmetric_difference(set A, set B)` – return the symmetric difference of two sets

• Procedure:
 • Create an empty set, say S
 • Loop through each element A_i in set A
 • If A_i is NOT in B (by calling `contains()`)
 • Insert A_i into S
 • Loop through each element B_i in set B
 • If B_i is NOT in A (by calling `contains()`)
 • Insert B_i into S
 • Return S
Red-Black Tree

• Another type of self-balancing tree:

• Explore 4 YouTube videos here: