CS 261-020
Data Structures

Lecture 18
Final Exam Review
Closing Remarks
3/10/22, Thursday
Odds and Ends

• Assignment 5 due Sunday midnight
• Okay, I changed my mind…
 • No Quiz this week!

• Demo your assignment 4 by tomorrow!
Lecture Topics:

- Final
- Midterm Review
- Closing Remarks
Midterm

• 3/18 Friday during 9:30 – 10:50 am
• Same classroom
• Close book, close notes
• No calculator allowed
• Question types: multiple choices, T/F, short answer
 • Similar to the Midterm Exam
• Bring pencil/pen, and your photo ID (student ID/driver license/passport)
• Scratch paper will be provided upon request
Final

• Topics: Week 5-9 (lecture 9-16):
 • Binary Search Trees
 • Tree vs. Binary Tree
 • BST Operations and their complexity:
 • Finding an element
 • Inserting an element
 •Removing an element
 • Traversal
 • DFS: Pre-order vs. in-order vs. post order
 • BFS: level order
Final

• Topics: Week 5-9 (lecture 9-16):
 • AVL Tree
 • Balance factor of a node
 • Single rotation vs. double rotation
 • Runtime complexity of AVL tree operations
 • Priority Queues
 • Array-based heap (min/max heap)
 • Operations:
 • Insert, remove
 • Percolations
 • Build a heap from an arbitrary array
 • Heapsort
 • Map and Hash table
 • Graph
• Topics: Week 5-9 (lecture 9-16):
 • Map and Hash table
 • Hash functions
 • HT operations and their runtime complexity:
 • lookup
 • Insert
 • Remove
 • Resolve Hash collisions
 • Chaining
 • Open Addressing
 • Load factor
 • Tombstone
Final

• Topics: Week 5-9 (lecture 9-16):
 • Graph
 • Representation: adjacency list vs. adjacency matrix
 • Single source reachability
 • DFS vs. BFS in graph
 • Single source lowest-cost paths
 • Dijkstra’s Algorithm
Be Confident...

Now you are able to...

• Describe the properties, interfaces, and behaviors of basic abstract data types
• Read an algorithm or program code segment and analyze the time complexity.
• State the time complexity of the fundamental operations associated with a variety of data structures.
• Recall the space utilization of common data structures in terms of the long-term storage needed to maintain the structure, as well as the short-term memory requirements of fundamental operations, such as sorting.
• Design and implement general-purpose, reusable data structures that implement one or more abstractions.
• Compare and contrast the operation of common data structures in terms of time complexity, space utilization, and the abstract data types they implement.
Final Remarks...

• Thank you so much for your commitment to this course

• Future improvements?
 • MyOSU → Student Records →

• ULA position
 • Contact me! And apply through: https://jobs.oregonstate.edu/postings/103887
Final Remarks...

• Submit all your work by the deadline
 • Assignment 5

• Final exam on Friday, 3/18 9:30 am
 • Bring your photo ID

• Grade disputation:
 • By 3/20 6pm