CS 261-020
Data Structures
Lecture 6
Complexity Analysis
Stack, Queue, Deque
1/20/22, Thursday
Odds and Ends

• Assignment 2 documentation posted
 • Skeleton Code will be uploaded tonight

• Due: Sunday 1/23 midnight
 • Quiz 3 (unlock after today’s lecture)
Lecture Topics:

• Complexity Analysis
 • Array Insertion
 • List insertion

• Stacks, Queues, and Deques
 • Linear ADTs
Complexity of dynamic array insertion

• Recall: dynamic array insertion
 • Case 1: if size < capacity
 • Insert the new element
 • Case 2: if size ≥ capacity
 • Step 1: allocate a new array that has twice the capacity
 • Step 2: copy all elements from data to new array
 • Step 3: delete the old data array and update data pointer
 • Step 4: Insert the new element

• Group Activity: What is the best-case, worst-case, and average case runtime complexities?
Complexity of dynamic array insertion

• Group Activity: What is the best-case, worst-case, and average case runtime complexities?

• Best case: when size < capacity
 • Write the new value into the next open space
 • Time it takes to run this operation doesn’t depend on the size of the array \(n \)
 • Thus, \(O(1) \)

• Worst case, when size >= capacity
 • Require allocating a new array
 • Iterate through the \(n \) elements in the old array and copying them into the new array
 • Thus, \(O(n) \)
Complexity of dynamic array insertion

• Group Activity: What is the best-case, worst-case, and average case runtime complexities?

• How to determine average Case:
 • Use amortized analysis – a large cost is defrayed by spreading smaller payments over a period of time.
 • $O(n)$ insertion cost (worst case) happens far less often than $O(1)$ insertion cost (best case)
 • Since we double the capacity
 • Quantify the runtime complexity by aggregate analysis, by computing an upper bound T on the total cost of a sequence of n operations. Thus, average cost is T / n
Complexity of dynamic array insertion

- Assuming a dynamic array whose capacity starts at 1, doubled if resized. Perform a sequence of n insert. What’s the total cost?

- 1st insertion: Write cost 1, copy cost 0
- 2nd insertion: Write cost 1, copy cost 1 (resize)
- 3rd insertion: Write cost 1, copy cost 2 (resize)
- 4th insertion: Write cost 1, copy cost 0
- 5th insertion: Write cost 1, copy cost 4 (resize)
-
Complexity of dynamic array insertion

• Assuming a dynamic array whose capacity starts at 1, doubled if resized. Perform a sequence of n insert. What’s the total cost?

• Create a table:

<table>
<thead>
<tr>
<th>Insertion # (resize # (k))</th>
<th>1</th>
<th>2 (1)</th>
<th>3 (2)</th>
<th>4</th>
<th>5 (3)</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9 (4)</th>
<th>10</th>
<th>...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Write cost</td>
<td>1</td>
</tr>
<tr>
<td>Copy cost</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>0</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>8</td>
<td>0</td>
<td>...</td>
</tr>
</tbody>
</table>
Complexity of dynamic array insertion

<table>
<thead>
<tr>
<th>Insertion # (resize # (k))</th>
<th>1</th>
<th>2 (1)</th>
<th>3 (2)</th>
<th>4</th>
<th>5 (3)</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9 (4)</th>
<th>10</th>
<th>...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Write cost</td>
<td>1</td>
<td>...</td>
</tr>
<tr>
<td>Copy cost</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>0</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>8</td>
<td>0</td>
<td>...</td>
</tr>
</tbody>
</table>

- Total Write cost = n
- Total copy cost:
 \[= 2^0 + 2^1 + 2^2 + 2^3 + \ldots + 2^{\log n - 1}\]
 \[= 2^{\log n} - 1\]
 \[= n - 1\]
Complexity of dynamic array insertion

<table>
<thead>
<tr>
<th>Insertion # (resize # (k))</th>
<th>1</th>
<th>2 (1)</th>
<th>3 (2)</th>
<th>4</th>
<th>5 (3)</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9 (4)</th>
<th>10</th>
<th>...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Write cost</td>
<td>1</td>
<td>...</td>
</tr>
<tr>
<td>Copy cost</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>0</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>8</td>
<td>0</td>
<td>...</td>
</tr>
</tbody>
</table>

- Total cost = Total Write cost + Total copy cost: \(O(n)\) insertion
- \(= n + (n - 1)\)
- \(= 2n - 1\)
- Thus, average is \((2n-1)/n = O(1)\)
Complexity of dynamic array insertion

• Thus, average case is \((2n-1)/n = \mathcal{O}(1)\)

• On average, dynamic array insertion is a constant time operation.
Complexity of linked list insertion

• Assuming that we already know exactly where in the list we want to insert a new value (e.g. at the head or at the tail).

• Steps:
 • Allocating a new node
 • Updating pointers

• All run in constant time, thus, the runtime complexity is $O(1)$
 • For best, worst, and average cases
Complexity of linked list removal

• Assuming that we already know exactly where in the list we want to remove.

• Steps:
 • Updating pointers
 • Free the node

• All run in constant time, thus, the runtime complexity is $O(1)$
 • For best, worst, and average cases
Dynamic Array vs. Linked List

<table>
<thead>
<tr>
<th></th>
<th>Dynamic Array</th>
<th>Linked List</th>
</tr>
</thead>
<tbody>
<tr>
<td>Insertion</td>
<td>O(n)</td>
<td>O(1)</td>
</tr>
<tr>
<td>Removal</td>
<td>O(n)</td>
<td>O(1)</td>
</tr>
<tr>
<td>Access the nth element</td>
<td>O(1)</td>
<td>O(n)</td>
</tr>
</tbody>
</table>
Lecture Topics:

• Complexity Analysis
 • Array Insertion
 • List insertion

• Stacks, Queues, and Deques
 • Linear ADTs
Stacks

• A linear ADT that imposes a Last In, First Out (LIFO) order on elements
 • The last element inserted must be the first one to remove
 • Real life examples: a stack of books, a stack of dishes, web browser’s “back” history, “undo” operation in a text editor

• A stack ADT has two ends: top and bottom
 • New elements can only be inserted at top
 • Only the element at the top may be removed

• Two main operations:
 • Push – inserts an element on the top
 • Pop – removes the top element
Stacks

Push order: 1 2 3 4

Pop order: 4 3 2 1
Implement Stack using Linked List

• Using a singly linked list, head of the list = the top of the stack

• When a value is pushed into a stack, it becomes the new head of the list

• When a value is popped, the current head of the list is removed
 • The next node becomes the new head
Implement Stack using Linked List

push (8)

pop ()
Implement Stack using Linked List

• Complexity Analysis:
 • Push() – $O(1)$
 • Pop() – $O(1)$

*For all best-case, worst-case, and average-case
Implement Stack using Dynamic Array

• Using dynamic array, the end of the array = head of the stack

• When a new element is **pushed** onto the stack, it is **inserted** at the **end** of the array
 • Resize if needed, as a normal dynamic array

• When an element is **popped**, the array’s **last element** is **removed**
Implement Stack using Dynamic Array

```
push(18)
push(16)
push(32)  <-- resized!
pop()    
```
Implement Stack using Dynamic Array

• Complexity Analysis
 • Pop() – $O(1)$
 • for all best-case, worst-case, and average case

• Push()
 • $O(1)$ Best-case and average case
 • $O(n)$ worst-case (when resize is needed)
Queues

• A linear ADT that imposes a First In, First Out (FIFO) order on elements
 • The first element to be removed is the first one that was placed into it
 • Real life examples: a line of people waiting for check out

• A Queue ADT has two ends: front and back
 • Inserting elements to the back
 • Removing elements from the front

• Two main operations:
 • Enqueue – insert an element at the back
 • Dequeue – remove an element at the front
Queues

enqueue order: 1 2 3 4 5 6

dequeue order: 1 2 6
Implement Queue using Linked List

• Using a singly linked list. Must keep track of both the head and the tail of the list

• Enqueue onto the back \(\rightarrow\) insert at the tail of the list

• Dequeue from the front \(\rightarrow\) remove from the head of the list
Implement Queue using Linked List
Implement Queue using Linked List

• Complexity Analysis:
 • enqueue() – O(1)
 • dequeue() – O(1)

*for all best-case, worst-case, and average case
Implement Queue using Dynamic Array

• Using a dynamic array,
 • Front of the queue = front of the array
 • Back of the queue = back of the array

• Ex. A queue with 3 values (1 at the front, 5 at the back)

• Enqueue a new value → insert it at the end of the array

• What about dequeue?
Implement Queue using Dynamic Array

• Dequeue:
 • Option 1: remove the front, and shift all the remaining to left
 • Drawback: O(n) runtime complexity for each dequeue → NOT GOOD!!!

• Option 2: allow the front of the queue to “float” back into the middle of the array.
 • Need to keep track of the start of the data
Implement Queue using Dynamic Array

Start = 1, size = 2

capacity = 4

enqueue (7)

Start = 1, size = 3

capacity = 4

start = 2, size = 2

capacity = 4

enqueue (9)

Start = 2, size = 3

capacity = 4
Implement Queue using Dynamic Array

• An array that allows data to wrap around from the back to the front is known as a **circular buffer**

• Q: How do we know which index corresponds to the back of the queue?
 • By computing a mapping between the array’s **logical indices** and its **physical indices**

• Logical indices – the indices relative to the **start of the data**
• Physical indices – the indices relative to the **start of the physical array**
Implement Queue using Dynamic Array

• Mapping formula: \(\text{physical} = \text{start} + \text{logical} \);

• Since it is circular, add the following to check:

 \[
 \text{if (physical} \geq \text{capacity)} \{ \\
 \quad \text{physical} -= \text{capacity}; \\
 \}
 \]

 \[
 \text{physical} \quad \text{if 2} + 3 \equiv 4 \text{ modulo 4}
 \]

• OR: \(\text{physical} = (\text{start} + \text{logical}) \mod \text{capacity} \);

• Index at which the next element will be inserted:

 • Previously: \(\text{array}[\text{size}] \) – when the data starts at physical index 0

 • Now: \(\text{array}[\text{physical}] \) – where \(\text{physical} = (\text{start} + \text{size}) \mod \text{capacity} \)
Implement Queue using Dynamic Array

• Dynamic Array resizing for the queue implementation

• When do we need to resize?
 • size \geq capacity

• When resize, reindex!
 • Logical index 0 \leftrightarrow Physical index 0

• How?
 • Loop through the logical indices from 0 to size – 1
 • Copy elements at each logical index in the old array to the equivalent physical index in the new array
Implement Queue using Dynamic Array

• Visually, look like this:
Implement Queue using Dynamic Array

• Complexity:
 • Dequeue – $O(1)$ for all best-case, worst-case, and average case

• Enqueue
 • $O(1)$ for best-case and average case
 • $O(n)$ for worst-case, when resize is needed