CS 271 Computer Architecture and Assembly Language

Self-Check for Lecture#15

Solutions

Given the following partial data segment, which starts at address 0x0200 :

.data list DWORD 1, 2, 6, 24, 120, 720, 5040, 40320 x DWORD LENGTHOF list y DWORD SIZEOF list

Show addresses in 4-digit hexadecimal. Show contents in decimal.

- 1. x contains 8
- 2. y contains 32
- The address of x is 0x220 (hex)
 Address of list + SIZEOF list = 0x200 + 0x20 = 0x220 (Note: 32 decimal = 0x20)
- 4. Given this code fragment:

mov	esi,	OFFSET list	; esi ← 0x200
mov	eax,	[esi+5*TYPE list]	; TYPE list = 4, so eax gets the contents of
			esi+20, which is the 6 th element of list

eax contains 720

5. Given this code fragment:

mov	esi,	OFFSET list	; esi
mov	ebx,	У	; ebx ← 32
sub	ebx,	TYPE y	; ebx ← 28 (= 0x1C)
add	esi,	ebx	, esi \leftarrow 0x21C, so esi contains the address of
			the 8 th element of list

[esi] contains 40320

6. Given this code fragment:

```
mov esi, OFFSET list
mov ebx, y
sub ebx, TYPE y
add esi, ebx ; same as #5 code
mov al, BYTE PTR [esi+1] ; [esi] contains 40320. esi+1 is the address
of the 2<sup>nd</sup> byte.
```

The AL register contains 157

40320 decimal = 0x9D80, or 00 00 9D 80 in big-endian. In the little-endian IA-32, it's 80 9D 00 00. So the 2nd byte is 0x9D = 157 Given the following partial data segment, which starts at address 0x0200 :

.data		
matrix	DWORD	20 DUP(5 DUP(?))
x	DWORD	LENGTHOF matrix
У	DWORD	SIZEOF matrix
pal	BYTE	"Hello world.",0
len	DWORD	LENGTHOF pal

Show addresses in 4-digit hexadecimal. Show contents in decimal.

- 1. x contains **100**
- 2. y contains 400
- 3. In high-level language notation, the 3rd element of the 9th row is referenced as *matrix*[8][2].

```
The address of matrix[8][2] is 0x2A8 (hex)
BaseAddress + elementSize * [(row# * elementsPerRow) + column#]
0x0200 + 4 * [(8 * 5) + 2]
0x0200 + (decimal 4 * 42 = 168)
0x0200 + 0xA8 = 0x2A8
```

4. Given this code fragment:

	mov	esi,	OFFSET	pal
	mov	ecx,	len	
	sub	ecx,	2	
	cld			
one:				
	lodsb			
	call	Write	Char	
	loop	one		
	mov	ecx,	len	
	sub	ecx,	2	
	std			
two:				
	lodsb			
	call	Write	Char	
	loop	two		

WriteChar displays the character in the AL register. What is displayed?

Hello world.dlrow olle

All keyboard input is character. The keyboard digits, '0', '1', '2', ..., '9' are ASCII codes 48, 49, 50, ..., 57. When a user enters a numeric value, it comes into memory as a string of digits.

This exercise is intended to show why it's necessary to convert to numeric representation before using the string of digits. An ASCII table is provided below.

To add two digit strings, you have to be sure that the strings both have the same length by zero-filling the shorter string on the left. Carry digits would be an additional nightmare. This example ignores both of those problems by adding two strings of equal length with no carry digits.

What is the (string) result of adding the following digit string, digit by digit?

a	BYTE	″2458″ , 0
b	BYTE	<i>"</i> 6301 <i>"</i> ,0

"hgei" "8" + "1" = 56 + 49 = 105 = "i" "5" + "0" = 53 + 48 = 101 = "e" "4" + "3" = 52 + 51 = 103 = "g" "2" + "6" = 50 + 54 = 104 = "h"

Dec	H	COCT	Cha	r	Dec	Hx	Oct	Html	Chr	Dec	Нx	Oct	Html	Chr	Dec	Hx	Oct	Html Cł	nr
0	0	000	NUL	(null)	32	20	040	 <i>"</i> #32;	Space	64	40	100	 <i>‱#</i> 64;	0	96	60	140	`	8
1	1	001	SOH	(start of heading)	33	21	041	!	1	65	41	101	A	A	97	61	141	a#97;	a
2	2	002	STX	(start of text)	34	22	042	 <i>₄</i> #34;	"	66	42	102	<i>B</i>	в	98	62	142	 ∉#98;	b
3	3	003	ETX	(end of text)	35	23	043	#	#	67	43	103	a#67;	С	99	63	143	∉#99 ;	С
4	4	004	EOT	(end of transmission)	36	24	044	 4#36;	\$	68	44	104	 ≨#68;	D	100	64	144	≪#100;	d
5	5	005	ENQ	(enquiry)	37	25	045	 ∉37;	*	69	45	105	<i>‰#</i> 69;	Е	101	65	145	e	e
6	6	006	ACK	(acknowledge)	38	26	046	∉ 38;	6	70	46	106	<i>∝</i> #70;				_	G#102;	
7	7	007	BEL	(bell)	39	27	047	₄#39;	1.00	71			G#71;		103	67	147	G#103;	a.
8	8	010	BS	(backspace)	40			«#40;		72	48	110	6#72;			-		«#104;	
9	9	011	TAB	(horizontal tab)	41	29	051))	73	49	111	<i>‱#</i> 73;	I	105	69	151	i	i
10	A	012	LF	(NL line feed, new line)	42	2A	052	6#42;	*	74	4A	112	<i>‱#</i> 74;	J	106	6A	152	j	j –
11	в	013	VT	(vertical tab)	43			6#43;			_		⊊#75;		107	6B	153	≼#107;	k
12	С	014	FF	(NP form feed, new page)	44	2C	054	6#44;	1				¢#76;					 ‰#108;	
13	D	015	CR	(carriage return)	45			«#45;					⊊#77;					m	
14	E	016	SO	(shift out)	46			«#46;		78			<i>⊾</i> #78;		110	6E	156	n	\mathbf{n}
15	F	017	SI	(shift in)	47	2F	057	6#47;	1	79	4F	117	<i>⊊</i> #79;	0	111	6F	157	G#111;	0
16	10	020	DLE	(data link escape)	48	30	060	6#48;	0	80	50	120	 ≨#80;	Р	112	70	160	p	p
17	11	021	DC1	(device control 1)	49	31	061	«#49;	1	81	51	121	⊊#81;	Q	113	71	161	q	q
18	12	022	DC2	(device control 2)	50	32	062	«#50;	2	82			⊊#82;		114	72	162	r	r
19	13	023	DC3	(device control 3)	51	33	063	¢#51;	3	83	53	123	∉#83;					∉#115;	
20	14	024	DC4	(device control 4)	52	34	064	«#52;	4				 ∉84;		116	74	164	t	t
21	15	025	NAK	(negative acknowledge)	53	35	065	5	5	85	55	125	 ∉85;	U	117	75	165	u	u
22	16	026	SYN	(synchronous idle)	54			«#54;		86			V					v	
	_	027		(end of trans. block)	55	37	067	∝#55;	7	87			⊊#87;		119	77	167	∉#119;	w
24	18	030	CAN	(cancel)	56	38	070	8	8	88			 ≨#88;					∉#120;	
25	19	031	EM	(end of medium)	57	39	071	∝#57;	9	89	59	131	 ∉#89;	Y	121	79	171	y	Y
26	1A	032	SUB	(substitute)	58	ЗA	072	:	:	90	5A	132	∉ #90;	Z	122	7A	172	z	z
27	1B	033	ESC	(escape)	59	ЗB	073	₀#59;	2	91			<i>∝#</i> 91;		123	7B	173	∉#123;	(
28	1C	034	FS	(file separator)	60	3C	074	∝#60;	<	92	5C	134	⊊#92;	1				<i>⊾#</i> 124;	
29	1D	035	GS	(group separator)	61	ЗD	075	l;	=	93	5D	135	 ∉#93;					}	
30	1E	036	RS	(record separator)	62			>					 ∉94;					~	
31	lF	037	US	(unit separator)	63	ЗF	077	?	2	95	5F	137	⊊#95;	_	127	7F	177	∉#127;	DEL
										-					-			-	

Source: www.LookupTables.com