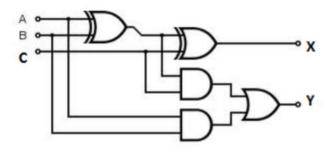

CS 271 Computer Architecture and Assembly Language

Self-Check for Lecture#18

Solutions are posted

- 1. Show the truth table for the circuit shown above. Columns X, Y, and Z are for your convenience if you want to save intermediate results.
- 2. Find a Boolean equation to describe the circuit shown above.

R=


3.	(Optional Challenge) Reduce R to its simplest form.
	Show your simplification steps.

A	В	C	X	Y	Z	R
0	0	0				
0	0	1				
0	1	0				
0	1	1				
1	0	0				
1	0	1				
1	1	0				
1	1	1				

4.	It takes one clock cycle to perform an addition operation in the 4-bit ripple-carry adder (see Lecture
	slide page 7). How many clock cycles will it take for one addition instruction to be executed in a 64-
	bit ripple-carry adder?

 clock	cycles

5. The circuit below should be familiar to you, even though it is in a slightly different configuration from the lecture. What does the circuit do? What are the inputs? What results are expected at X and at Y?

