Self-Check for Lecture\#18

Solutions are posted

1. Show the truth table for the circuit shown above. Columns X, Y, and Z are for your convenience if you want to save intermediate results.
2. Find a Boolean equation to describe the circuit shown above.

$$
R=A \bar{B} \bar{C}+A \bar{B} C \quad \text { Use Lines where } \mathrm{R}=1
$$

3. (Optional Challenge) Reduce R to its simplest form.

\mathbf{A}	\mathbf{B}	\mathbf{C}	x	y	Z	\mathbf{R}
0	0	0	0	0	0	0
0	0	1	0	0	0	0
0	1	0	0	0	0	0
0	1	1	1	1	1	0
1	0	0	1	0	1	1
1	0	1	0	0	1	1
1	1	0	1	0	1	0
1	1	1	1	1	0	0

$$
\begin{array}{ll}
R=A \bar{B}(\bar{C}+C) & \text { Distributive Law } \\
R=A \bar{B}(1) & \text { Inverse Law } \\
R=A \bar{B} & \text { Identity Law }
\end{array}
$$

4. It takes one clock cycle to perform an addition operation in the 4-bit ripple-carry adder (see Lecture slide page 7). How many clock cycles will it take for one addition instruction to be executed in a 64bit ripple-carry adder?
\qquad
1 \qquad clock cycles
5. The circuit below should be familiar to you, even though it is in a slightly different configuration from the lecture. What does the circuit do? What are the inputs? What results are expected at X and at Y ?

It's just a full adder. Inputs A and B are corresponding bits of two binary numbers that are to be added. Input C is "carry in". Output X is the sum bit, and output Y is the "carry out" bit.

