
CS 271Computer Architecture and Assembly Language

Self-Check for Lecture #3

Solutions

1. What’s wrong with the following data segment?

.data

x_value DWORD 5

7Eleven BYTE “My job”,0

X_VALUE DWORD 500

Age ;user’s age; DWORD ?

x_value and X_VALUE are the same variable, since MASM is not case-sensitive.

7Eleven is an invalid variable name (can’t start with a digit)

Age ;user’s age; DWORD ? The first semi-colon makes all of the rest of the line into a

comment.

2. The following data segment starts at memory address 1400. What is the address of each variable?

.data

myName BYTE “Elmer Fudd”,0 ;Address = 1400, size = 11

yourName BYTE 30 DUP(0) ;Address = 1400+11 = 1411, size = 30

myAge DWORD 45 ;Address = 1411+30 = 1441, size = 4

yourAge DWORD ? ;Address = 1441+4 = 1445, size = 4

myScore DWORD ? ;Address = 1445+4 = 1449, size = 4

yourScore DWORD ? ;Address = 1449+4 = 1453, size = 4

3. Why is it a good idea to implement a program’s output first?

As soon as the output is displayed, you can check to see if it fulfills layout specifications. The

greatest advantage, however, is that the rest of the program development will be much easier to

debug, since results will be displayed as the program’s processes are implemented.

4. What’s the result of the following code fragment?I.E., what registers are changed?

mov eax,100
cdq

mov ebx,13

div ebx

Given the following constant definition and data segment:

MY_CREDITS = 12

.data

x DWORD 12

y DWORD 13

z WORD 25

5. What’s wrong with the following code segment statements?

mov ebx, z Size mismatch

mov y, x Can’t move memory to memory

mov ebx, MY_CREDITS nothing wrong here

mov MY_CREDITS, ebx Can’t assign to a constant

Given the following data segment:

.data

intro_1 BYTE “Welcome, ”

username BYTE “Fred.”

intro_2 BYTE “What’s up?”

count DWORD 0

6.What is displayed by the following code segment statements?

mov edx, OFFSET intro_1

CALL WriteString

CALL CrLf

mov edx, OFFSET username

CALL WriteString

CALL CrLf

mov edx, OFFSET intro_2

CALL WriteString

CALL CrLf

Each call to WriteString displays memory until a zero is encountered.

