CS 271Computer Architecture and Assembly Language
Self-Check for Lecture#8
Solutions

1.
a. Show the 16-bit representation of 2437(decimal).

2437 (decimal) = 100110000101 binary = 0000100110000101(16-bit)

b. Convert the 16-bit representation of part (a)to the corresponding odd-parity Hamming code. Add

the appropriate number of parity bits.

Since the representation is 16-bit, we need log;16 + 1 = 5 additional bits, 1 e the Hamming code will have 21 bits.
Number the places left to right starting with 1, and put the digits of the 16-bit number into the places, skipping bits

with numbers that are powers of 2:

1 2 13 |4 |5 |6 |7 [8 |9 1011 (1213 |14 15|16 |17 |18 |19 | 20

1

o |00 0 1 /0|0 |1 1 |0|O0 0|01 |0

ke |

+ Bit =1 determines parity for bits £1,3,5,7,9,11,13,15,17,19,.21
o bits#9.13.19_ and 21 are setto 1, so bit #1 must be 1 to make odd-parity.
* Bit #2 determines parity for bits #2,3,6,7,10,11,14,15,18,19
o bit #1915 set to 1, so it #2 must be 0.
s Bit 74 determines parity for bats #4,5,6,7,12,13,14,15,20,21
o bits # 12,13, and 21 are set to 1, so bit #4 must be 0.
+ Bit #8 determines parity for bits £8,9,10,11,12,13,14,15
o bits# 912, and 13 are setto 1, so bit #8 must be 0.
s Bit #16 determines parity for bits #16,17,18,19,20. 21
= bits# 19 and 21 are set to 1, so bit #16 must be 1.

Answer:

1 12 13 |4 7T 18 |9 1011 12713141516 |17 [18]19)20

LA

| =
=t
=
—
=]

8§ 1
1 (o0]ofofofojofo1]o]o]1 1

2. Given the 21-bit even-parity Hamming code 100001100011100110101.

a. Which bit is incorrect?

* Number the bits as shown in the first problem, enter the Hamming code, and mark the parity bits:
1 2 3 4 5 6 7 8 9 1011|1213 (14|15 |16 |17 |18 |19 |20
1 /00001 |1 |0|0 0|1 (1 |1 |0 |01 (1 |0 |10
+ Bit #1 determunes parity for bits #1,3,5,7,9,11,13.15,17,19.21
o bits#1,7.11,13,17,19, and 21 are set to 1. That’s seven 1-bats, so there 1s an even-parity error in one of
the bits in ErrorSer] = {1,3,5,7,9,11,13,15,17,19, 21}.
s Bit #2 determunes parity for bits #2,3,6,7,10,11,14,15,18,19
o bits #8,7.11, and 19 are setto 1. That’s four 1-bits, so the error 1s not i the bits in
{2,3,6,7,10,11,14.15,18, 19}
s Bit #4 determines parity for bits #4,5,6,7,12,13,14,15,20,21
o bits#6,7, 12,13, and 21 are setto 1. That's five 1-bits, so there is an even-parity error in one of the bits
in ErrorSerd = {4,5,6,7.12,13,14,15.20, 21}.
+ Bit #8 determunes parity for bits #3,9.10,11,12,13,14,15
o bits# 11,12, and 13 are setto 1. That’s three 1-bits, so there is an even-parity error in one of the bits in
ErrorSer§ = {8,9,10,11,12,13,14, 15},
+ Bit #16 determines parity for bits #16,17,18,19,20.21
o bits# 16,1719 and 21 are set to 1. That’s four 1-bits, so the error 1s not in bits #16,17,18,19.20, or 21.

1

1

Answer:

e The only number in the intersection of ErrorSetl, ErrorSet4, and ErrorSet8 is 13, so the error is

in bit #13.

e | P

e Another way to find it is to add the parity place numbers that have errors: 1+ 4 + 8 =13.

b. After the error is corrected, what decimal number is represented by the Hamming code of

part (a)?

* The corrected code 13
1 2 3 4 5 4] 7 3) 1011 (12 13 (14 15|16 |17 (1819 (20| 21
1 |0 (0 |0 |0 |1 1 (0 |0 |0 |1 1 {0 (0 |0 |1 1 (0 _1 0 ‘l

Answer:

3. Note: This is NOT a programming assignment (but you might enjoy programming it anyway).

| need a program to calculate the odds of winning a lottery. The user enters the range of possible

13077

‘s Extract the data bits ... 001100110 0 010101, and convert to decimal:

numbers and the number of picks required. For example, the user might enter 42 for the range,

with 5 picks on one ticket. This will involve calculating the number of combinations of r items taken
from a set of n items (i.e., nCr).

The program should display the odds of winning with one ticket.
For example: The odds of winning with 5 picks from 42 lottery numbers:

a. How would you modularize this problem?

One way to break the problem into its logical components:

1)display a title screen

2)get the user’'s numbers

3)calculate the odds

a. calculate nCr

i. calculate factorials
4)display result

b. Show a hierarchy chart of your modularization.

main

v

intro

v

getData

A 4

calculateOdds

v

calculateCombinations

v

factorial

v

showResults

1in 850668

