
CS 271
Computer Architecture &

Assembly Language

Lecture 1

Introduction and Course Syllabus

1/4/22, Tuesday

1

Lecture Topics:

• Syllabus

• Introduction to Hardware, Software, and Languages

• Setup Instructions

2

About Me

• 8th year at OSU, got my Bachelor degree in Spring 2018, and Master Degree in Fall 2020

• Became a full-time instructor since Winter 2021☺

• Involved in First year CS program since 2017
• TA 2017-2018
• GTA 2018-2020

• Taught CS 161 in Fall 2019 and 2020, Winter 2021, and Spring 2021

• Taught CS 162 in Spring and Summer 2020, and Fall 2021

• Taught CS 271 in Winter 2021

• Taught CS 372 in Summer and Fall 2021

• Taught CS 444/544 in Spring 2021

3

Syllabus

4

Course Information

• Canvas site:
• All course materials

• Code submission (as .asm)

• Must score 100% on syllabus quiz to unlock the rest

• Discord:
• Online discussion forum

• Textbook:
• Irvine, Kip R., Assembly Language for x86 Processors (8th ed.)

• You may access the 7th edition here

5

https://canvas.oregonstate.edu/courses/1849569/
https://discord.gg/BgugqT4gSW
http://classes.engr.oregonstate.edu/eecs/winter2022/cs271-001/textbook_7th_edition.pdf

Basics

• Instructor: Yipeng (Roger) Song
• I go by Roger ☺

• Email
• Instructor: songyip@oregonstate.edu

• TAs: cs271-ta@engr.orst.edu (TAs and me)

• Office Hours: TBD

• Requirements: Laptop

• Programming Language: Assembly (MASM)

6

mailto:songyip@oregonstate.edu
mailto:cs271-ta@engr.orst.edu

7

More Basics…

• Be respectful (Establishing a Positive Community)

• Have a growth mindset
• Most abilities could be developed through dedication and hard work

• Academic Misconduct (0 tolerance!!) (See section 17 of the syllabus)
• https://engineering.oregonstate.edu/academic-misconduct

• Be Proactive
• Take control and cause something to happen, rather than just adapt to a situation or wait for

something to happen

8

https://engineering.oregonstate.edu/academic-misconduct

Technology

• Laptops (Windows)

• Phones needed for DUO

• bypass DUO: Follow instructions here

9

https://it.engineering.oregonstate.edu/ssh-keygen

Attendance

• Lecture: Strongly Encouraged
• I will post lecture slides and demoed code on Canvas

10

Grade Breakdown

• 20% - Weekly Summaries

• 10% - Quizzes

• 15% - Midterm Exam

• 35% - Assignments

• 20% - Final Project

11

Weekly Summaries – 20%
• 10 in total (2% each)

• Open book, open note, open internet, open lecture, open classmates/friends.

• Available from: Thur 12 pm (after lecture) to Sun 11:59 pm
• Canvas is very unforgiving about due times -- don't push it.

• T/F, and multiple choices, short answers, covering assigned reading material and
lectures from the week

• A time limit of 6 hours

• Two attempts, the higher score will be recorded

• Cannot be taken after the due

12

Quizzes – 10%

• 5 in total, including the syllabus quiz (2% each)
• Open book, open note, open internet, but NOT open classmates/friends

• Available from: Thur 12 pm (after lecture) to Sun 11:59 pm
• Canvas is very unforgiving about due times -- don't push it.

• T/F, and multiple choices, short answers, covering material taught from the
previous quiz to that point

• 1 attempt, 60-minute time limit

• Refer to the Course Calendar for quiz due dates (weeks)

13

Midterm Exam – 15%

• One Mid Term (in Week 6)
• During lecture time

• In person, same classroom
• T/F, and multiple choices, short answers

• Close-everything

• Allowed to use a calculator, and scratch paper

14

Programming Assignments – 35%
• 5 in the term

• Some are one-week, and some are two-week assignments

• All programming assignments must be submitted in order to pass the course – otherwise F

• Always due Sunday by midnight

• All code (.asm) must run on Visual Studio – otherwise 0

• Late assignments
• 2 grace days throughout the term

• Late work is penalized 15% per day

• At max, 2 days late.

• More than 2 days after due → 0

• Refer to section 13 on the syllabus

15

Final Project – 20%
• No final exam, but a project

• Due during final’s week (exact time: TBD)

• Fail to submit the final project → F

• Not allowed to use grace days

16

Grading Philosophy*

• A [93 or greater) mastery

• A- [90 – 93)

• B+ [87 – 90)

• B [83 – 87) stable/proficient

• B- [80 – 83)

• C+ [77 – 80)

• C [73 – 77) passable

• C- [70 – 73)

*Note: I do round ☺ (i.e. 89.45 → 89.5 → 90 ☺)

17

How to Be Successful

• Read and listen carefully

• Start assignments early

• Be proactive with absences and issues that arise in the term

• Get help when you need it
• Make use of Discord and Office Hours

• Refer to section 14 on the syllabus

18

TAs

• Go see your TAs!!!

• Where: Varies

• When: Varies – check the Office Hours page on Canvas

19

https://canvas.oregonstate.edu/courses/1849569/pages/office-hours

Help Hierarchy

• Reread assignment, lecture slides, syllabus, textbook

• Google online

• Ask a friend

• Check Discord for relevant posts or create a new question

• Ask a TA
• You can attend office hours

• TAs will also be monitoring Discord

• Ask Roger

20

Lecture Topics:

• Syllabus

• Introduction to Hardware, Software, and Languages

• Setup Instructions

21

Intro to Problem-Solving Languages
• Viewed by “levels”

• Natural languages:
• E.g.: English, Spanish, Chinese…

• Used by humans

• Many interpretations

• Translated to programming languages by computer programmers

22

Intro to Problem-Solving Languages
• Viewed by “levels”

• High-level computer programming languages
• E.g.: Java, C/C++, Python…

• English like, portable to various architectures

• Strict rules of syntax and semantics

• Translated to lower levels by compilers/translators

• Low-level computer programming languages
• E.g.: Intel assembly, MacOS assembly…

• Mnemonic instructions for specific computer architectures

• Translated to machine languages by assemblers

23

Intro to Problem-Solving Languages
• Viewed by “levels”

• Machine-level computer languages
• E.g.: Intel machine instructions, MacOS machine instructions

• Actual binary code instructions for specific architecture

24

Programming Tools/Environments for Various
Language Levels

• Natural Language
• Word processors

• High-level programming languages
• Text editor, libraries, compiler, linker, loader, debugger

• E.g.: Eclipse, Visual Studio, …

• Low-level programming languages
• Text editor, libraries, assembler, linker, loader, debugger

• E.g.: any text editor together with MASM, Visual Studio, …

• Machine-level computer languages
• Some way to assign machine instructions directly into computer memory

• E.g.: set individual bits (switches), loader
25

Computer Languages / Computer Hardware
Viewed by “Levels” (simplified)

• Level 4: Problem solution in natural language
• Description of algorithm, solution design

• Programmer translates to …

• Level 3: Computer program in high-level computer programming language
• Source code (machine independent)

• Compiler translates to …

• Level 2: Program in assembly language
• Machine specific commands to control hardware components

• Assembler translates to …

• Level 1: Program in machine code
• Object code (binary)

• Linker / loader sets up …

• Level 0: Actual computer hardware
• Program in electronic form

26

Assembly Language

• In this course…
• Skip the “high-level language” level

• Write programs in assembly language

• Expand levels 2, 1, and 0
• understand what happens inside the computer

• Use an assembly language to understand a specific architecture

• Concepts transfer to other architectures

27

Assembly Language

• Assembly language provides:
1. Set of mnemonics for machines instructions

• Opcodes and addressing modes

2. Mechanism for naming memory addresses and other constants
• Note: a named memory address is usually called a “variable”

3. Other “conveniences” for developing source code for a particular machine
architecture

28

Assembler and assembly

• An assembler is a software system that takes assembly language as input
and produces machine language as output

29

Assembly
language program

(text)
Source code

Target machine
code (binary)
object codeAssembler

Operating Systems (OS)

• Operating systems provide interfaces among users, programs, and devices
(including the host computer itself).

• Implemented for specific architecture (in the host computer’s machine
language).

30

Low-level programming

• Level 2: Program in assembly language
• Assembler translates to …

• Level 1: Program in machine code
• Operating system does partial translation

• The hardware’s instruction set architecture (ISA) provides a micro-program for each machine
instruction (CISC*) or direct execution (RISC*)

• Level 0: Actual computer hardware
• Digital logic (circuits)

• Micro-architecture circuits control computer components

*More later on CISC (Complex Instruction Set Computer) and RISC (Reduced Instruction Set Computer)

31

Relationship:
Instruction Set → Architecture

• A computer’s instruction set is defined by the computer’s architecture.
• i.e.: each computer’s architecture has its own machine language.

• E.g.: Sun machine instructions will not work on an Intel architecture

• Cross-assemblers (software) can be used to convert a machine language to
another machine languages.

• Virtual machines (software) can be used to simulate another computer’s
architecture

32

Relationship:
Architecture → Software

• Hardware: Physical devices
• E.g.: circuits, chips, disk drives, printers…

• Software: Instructions that control hardware
• E.g.: games, word processors, compilers, operating systems…

• Sometimes the line between hardware and software is not clear
• E.g.: Parts of an operating system might be implemented in hardware

33

System Architectures

• Super-computer

• Mainframe

• Multiprocessor/Parallel (multi-core)

• Server

• Distributed (collection of Workstations)
• Network

• Personal computer
• Desktop, laptop, netbook …

• Micro-controller (Real-time/Embedded system)
• Phone, car, watch, appliance …

• Etc.

34

Two architecture development tracks

• Build more powerful machines
• Multi-core, etc.

• Build some machine smaller/cheaper
• Nanotech

• *Moore’s Law
• the number of transistors in a dense integrated circuit (IC) doubles about every two years

35

Why use assembly language?

• Easier than machine code

• Access to all features of target machine

• Performance (maybe)

• Using mixed languages

• Note that assembly language tends to solve toward a high-level language
• Advanced features (“auto” loop control, etc.)

• Libraries

36

37

Common uses of assembly language

• Embedded systems
• Efficiency is critical

• Real-time applications
• Timing is critical

• Interactive games
• Speed is critical

• Low-level tasks, Device drivers
• Direct control is critical

38

Main concepts:

• Hardware/software

• Languages (high-level, assembly, machine)

• How statements are translated from higher to lower levels

• Variety of architectures
• Each has its own instruction set

• Applications of assembly language

39

Lecture Topics:

• Syllabus

• Introduction to Hardware, Software, and Languages

• Setup Instructions

40

Things to do before next lecture

• Complete the syllabus quiz (and make sure you get 100%)

• Complete the Visual Studio Setup

• Do the self-check exercise

• Continue on the assigned readings

41

