CS 271
Computer Architecture &
Assembly Language

Lecture 1
Introduction and Course Syllabus
1/4/22, Tuesday

Lecture Topics:

* Syllabus
* Introduction to Hardware, Software, and Languages
* Setup Instructions

About Me

 8th year at OSU, got my Bachelor degree in Spring 2018, and Master Degree in Fall 2020
* Became a full-time instructor since Winter 2021©

* Involved in First year CS program since 2017
* TA2017-2018
* GTA 2018-2020

* Taught CS 161 in Fall 2019 and 2020, Winter 2021, and Spring 2021
* Taught CS 162 in Spring and Summer 2020, and Fall 2021

* Taught CS 271 in Winter 2021

e Taught CS 372 in Summer and Fall 2021

* Taught CS 444/544 in Spring 2021

Syllabus

——

WHEN ARE YOUR HOW WILL mY
OFFICE HOURS? GRADE BE

IT'S IN TI-IE SYLLABUS

This message brought To you by every instructor that ever lived.
WWW.PHDCOMICS.COM

Course Information

e Canvas site:

CS 271

* All course materials COMPUTER ARCH & ASSEM ...

* Code submission (as .asm)

e Must score 100% on syllabus quiz to unlock the rest OSU CS 271 W22
* Discord:

* Online discussion forum
* Textbook:

* Irvine, Kip R., Assembly Language for x86 Processors (8th ed) »

* You may access the 7t edition here ZZa g%

ASSEMBLY
ANGUAGE

for x86 Processors

https://canvas.oregonstate.edu/courses/1849569/
https://discord.gg/BgugqT4gSW
http://classes.engr.oregonstate.edu/eecs/winter2022/cs271-001/textbook_7th_edition.pdf

Basics

Instructor: Yipeng (Roger) Song
* | go by Roger ©

Email

e |nstructor: songyip@oregonstate.edu
e TAs: cs271-ta@engr.orst.edu (TAs and me)

Office Hours: TBD

Requirements: Laptop

Programming Language: Assembly (MASM)

mailto:songyip@oregonstate.edu
mailto:cs271-ta@engr.orst.edu

INCLUDE Irvine32.inc

DOG_FACTOR = 7/

.data
userName
userAge
intro_1
prompt 1
intro_2
prompt 2
dogAge
result_1
result_2
goodBye
X

y

z

.code
main PROC

BYTE
DWORD
BYTE
BYTE
BYTE
BYTE
DWORD
BYTE
BYTE
BYTE
DWORD
BYTE
BYTE

33 DUP(0) ;string to be entered by user
? ;integer to be entered by user
"Hi, my name is Lassie, and I'm here to tell you

"

"What's your name? ", 0

"Nice to meet you, ",C
"How old are you? ", 0
?
"Wow ... that's ", 0
n - o~ - In

in dog years !", 0O

"Good- bye ” 5 8

1¢C

37

g
)34 €

gl

;Introduce programmer

mov
mov

mov
call
call

AH, y
AL, z

edx, OFFSET intro_ 1
WriteString

CrLf

;Get user name
edx, OFFSET prompt_1
WriteString

edx, OFFSET userName

mov
call
mov
mov
call

ecx,

ReadString

;Get user age
edx, OFFSET prompt_2
WriteString

mov
call
call
mov

ReadInt

userAge, eax

your age in dog years

’

)

More Basics...

Be respectful (Establishing a Positive Community)

Have a growth mindset
* Most abilities could be developed through dedication and hard work

Academic Misconduct (O tolerance!!) (See section 17 of the syllabus)
* https://engineering.oregonstate.edu/academic-misconduct

Be Proactive

* Take control and cause something to happen, rather than just adapt to a situation or wait for
something to happen

https://engineering.oregonstate.edu/academic-misconduct

Technology

* Laptops (Windows)
* Phones needed for DUO
* bypass DUO: Follow instructions here

https://it.engineering.oregonstate.edu/ssh-keygen

Attendance

* Lecture: Strongly Encouraged
* | will post lecture slides and demoed code on Canvas

10

Grade Breakdown

20% - Weekly Summaries
10% - Quizzes

15% - Midterm Exam
35% - Assignments

20% - Final Project

11

Weekly Summaries — 20%

* 10 in total (2% each)
* Open book, open note, open internet, open lecture, open classmates/friends.

e Available from: Thur 12 pm (after lecture) to Sun 11:59 pm
e (Canvas is very unforgiving about due times -- don't push it.

* T/F, and multiple choices, short answers, covering assigned reading material and
lectures from the week

* Atime limit of 6 hours
* Two attempts, the higher score will be recorded

e Cannot be taken after the due

12

Quizzes — 10%

* 5in total, including the syllabus quiz (2% each)
* Open book, open note, open internet, but NOT open classmates/friends

e Available from: Thur 12 pm (after lecture) to Sun 11:59 pm
* Canvas is very unforgiving about due times -- don't push it.

* T/F, and multiple choices, short answers, covering material taught from the
previous quiz to that point

e 1 attempt, 60-minute time limit

e Refer to the Course Calendar for quiz due dates (weeks)

13

Midterm Exam — 15%

* One Mid Term (in Week 6)

* During lecture time

* In person, same classroom
* T/F, and multiple choices, short answers

* Close-everything
* Allowed to use a calculator, and scratch paper

14

Programming Assignments — 35%

5in the term

* Some are one-week, and some are two-week assignments

* All programming assighnments must be submitted in order to pass the course — otherwise F
* Always due Sunday by midnight

* All code (.asm) must run on Visual Studio — otherwise 0

* Late assignments
» 2 grace days throughout the term
* Late work is penalized 15% per day
* At max, 2 days late.
* More than 2 days after due 2 0

» Refer to section 13 on the syllabus

15

Final Project — 20%

* No final exam, but a project

* Due during final’s week (exact time: TBD)

Fail to submit the final project 2 F

Not allowed to use grace days

16

Grading Philosophy*

* A 93 or greater) mastery

e A- [90-93)

e B+ [87—-90)

B 83 — 87) stable/proficient
e B- [80-83)

« C+ [77-80)

e C 73 —77) passable

e« C- [70-73)

*Note: | do round © (i.e. 89.45 - 89.5 2 90 ©)

17

How to Be Successful

Read and listen carefully

Start assignments early

Be proactive with absences and issues that arise in the term

Get help when you need it
* Make use of Discord and Office Hours

Refer to section 14 on the syllabus

18

TAS

* Go see your TAs!!!
* Where: Varies

* When: Varies — check the Office Hours page on Canvas

19

https://canvas.oregonstate.edu/courses/1849569/pages/office-hours

Help Hierarchy

Reread assignment, lecture slides, syllabus, textbook

Google online

Ask a friend

Check Discord for relevant posts or create a new question
* Aska TA

* You can attend office hours
* TAs will also be monitoring Discord

* Ask Roger

20

Lecture Topics:

* Introduction to Hardware, Software, and Languages
* Setup Instructions

21

Intro to Problem-Solving Languages

* Viewed by “levels”

* Natural languages:
e E.g.: English, Spanish, Chinese...
e Used by humans
* Many interpretations
* Translated to programming languages by computer programmers

iHola!

{IR4F! Hello!

;Como estds?
{REFIS? < How are you?

22

o C

Intro to Problem-Solving Languages * e <o

int main(int argc, char ** argv)

* Viewed by HleveIS” { printf(“Hello, World!\n”);
* High-level computer programming languages ..
 E.g.:Java, C/C++, Python... R
* English like, portable to various architectures s s
* Strict rules of syntax and semantics e e

}

® now in Python
print “Hello, World!”

Translated to lower levels by compilers/translators

* Low-level computer programming languages
e E.g.: Intel assembly, MacOS assembly...

ax noprefix

* Mnemonic instructions for specific computer architectures
* Translated to machine languages by assemblers

section .data

message: db "Hello, World!", ©Ah, ©8h
global _main
section .text

_main:
mov rax, oxe2e0eee4 ; system call for write
mov rdi, 1 file descriptor 1 is stdout
mov rsi, qword message ; get string address
mov rdx, 13 number of bytes
syscall execute syscall (write)
mov rax, oxe2eeeeel system call for exit
mov rdi, @ exit code @
syscall execute syscall (exit)

mov eax, 1

mov ebx, @

1
p
3
4
5
[
7
8
£

int Ox80

M e M e e e e W

23

Intro to Problem-Solving Languages

* Viewed by “levels”
* Machine-level computer languages

40000000 :
: 00000000
¢ 11111111
: 00000000
: 01000000
: 00000000
: 00000000
: 00000000
: 00000000
: 00000000
: 10000000
: 10111010
: 00100001
: 01010100
: 01110010
: 00100000
: 01110100
: 01110101
: 01000100
: 01100100
: 00100100
: 00000000

e E.g.: Intel machine instructions, MacOS machine instructions

* Actual binary code instructions for specific architecture

01001101

01011010
00000000
11111111
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00001110
10111000
01101000
01101111
01100011
00100000
01101110
01001111
01100101
00000000
00000000

10010000
00000100
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000001
01101001
01100111
01100001
01100010
00100000
01010011
00101110
00000000
01010000

00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
10110100
01001100
01110011
01110010
01101110
01100101
01101001
00100000
00001101
00000000
01000101

00000011
00000000
10111000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00001110
00001001
11001101
00100000
01100001
01101110
00100000
01101110
01101101
00001101
00000000
00000000

00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00011111
11001101
00100001
01110000
01101101
01101111
01110010
00100000
01101111
00001010
00000000
00000000

rogram
canno

t ber
un in

Programming Tools/Environments for Various
Language Levels

[J
:’/ |

Natural Language
* Word processors

High-level programming languages
e Text editor, libraries, compiler, linker, loader, debugger
e E.g.: Eclipse, Visual Studio, ...

Low-level programming languages @
* Text editor, libraries, assembler, linker, loader, debugger [hh;‘padu
e E.g.: any text editor together with MASM, Visual Studio, ...

Machine-level computer languages
* Some way to assign machine instructions directly into computer memory

* E.g.:set individual bits (switches), loader
25

Computer Languages / Computer Hardware
Viewed by “Levels” (simplified)

Level 4: Problem solution in natural language
* Description of algorithm, solution design
* Programmer translates to ...

Level 3: Computer program in high-level computer programming language
* Source code (machine independent)
e Compiler translates to ...

Level 2: Program in assembly language
* Machine specific commands to control hardware components
e Assembler translates to ...

Level 1: Program in machine code
* Object code (binary)
* Linker / loader sets up ...

Level O: Actual computer hardware
* Program in electronic form

26

Assembly Language

* In this course...
e Skip the “high-level language” level
* Write programs in assembly language
 Expand levels 2,1,and 0

e understand what happens inside the computer

* Use an assembly language to understand a specific architecture
* Concepts transfer to other architectures

27

Assembly Language

Mnemonic Description
ADD A, byte add A to byte, put result in A
* Assembly language provides: ADDC A, byte add with carry
1. Set of mnemonics for machines instructions =~ °7%% # P¥te subtract with borrow
INC A increment A

* Opcodes and addressing modes

2. Mechanism for naming memory addresses and other constants
* Note: a named memory address is usually called a “variable”

3. Other “conveniences” for developing source code for a particular machine
architecture

28

Assembler and assembly

* An assembler is a software system that takes assembly language as input
and produces machine language as output

29

Operating Systems (OS)

I}

e Operating systems provide interfaces among users, programs, and devices
(including the host computer itself).

* Implemented for specific architecture (in the host computer’s machine
language).

30

Low-level programming

e Level 2: Program in assembly language
* Assembler translates to ...

* Level 1: Program in machine code

e Operating system does partial translation
* The hardware’s instruction set architecture (ISA) provides a micro-program for each machine
instruction (CISC*) or direct execution (RISC*)

* Level 0: Actual computer hardware
 Digital logic (circuits)
* Micro-architecture circuits control computer components

*More later on CISC (Complex Instruction Set Computer) and RISC (Reduced Instruction Set Computer)

31

Relationship:
Instruction Set €<= Architecture

* A computer’s instruction set is defined by the computer’s architecture.
* i.e.: each computer’s architecture has its own machine language.

e E.g.: Sun machine instructions will not work on an Intel architecture

* Cross-assemblers (software) can be used to convert a machine language to
another machine languages.

* Virtual machines (software) can be used to simulate another computer’s
architecture

32

Relationship:
Architecture €< -2 Software

 Hardware: Physical devices
e E.g.: circuits, chips, disk drives, printers...

e Software: Instructions that control hardware
* E.g.: games, word processors, compilers, operating systems...

* Sometimes the line between hardware and software is not clear
e E.g.: Parts of an operating system might be implemented in hardware

33

System Architectures

Super-computer

Mainframe

Multiprocessor/Parallel (multi-core)

Server

Distributed (collection of Workstations)
* Network

Personal computer
e Desktop, laptop, netbook ...

Micro-controller (Real-time/Embedded system)

s ,.: N
o i I 5%) | ”
Phone, car, watch, appliance ... @:’»&3@?{{!{1
Etc. | Eﬁ

=\
| - x>

= _—

34

Two architecture development tracks

50,000,000,000

* Build more powerful machines s

IBM z13 Storage Controller.

10,000,000,000 18-core Xeon Haswell-E5

Xbox One main SoCx, ¢ @ 8

o M I t t 5,000,000,000 e s OWE °
_ -core 35 . -
ulti-core, etc. S e $ o R s ery
Dual-core ltanium 2 @ A4 >4 °Ouadrcore+ GPU GT2 Core i7 Skylake K

2-core AMD Epyc
_-Apple A12X Bionic
Tegra Xavier SoC
Qualcomm Snapdragon 8cx/SCX8180
" HiSilicon Kirin 980 + Apple A12 Bionic
HiSilicon Kirin 710

Pentium D Presler Bo 8 Quad-core + GPU Core i7 Haswell
. . 1,000,000,000 AN % AT e
° B 500,000,000 Hanium 2 Madison 6M€» Bbe 5 L icals 21 2
uild some machine smaller/cheaper
Itanium 2 MCK\H\eyQ ell Core 2 Duo Wolfdale 3M
Pentium 4 Pregp#ft-; \000r52 Duo Allendale
Penti 4 Cedar Mill
100,000,000 A Foontiumaproscott
- Pentium 4 Nog Dcdo ©Barton
* Nanotech z 50000000 ron WO o
3 Pentium Il Mobile e . i @ARM Cortex-A9
8 3 AMDK&% entium il Coppermine
% 10,000,000 Pmo”je?w PRREBAE
[5,000,000 Klamath
Mg AMD K5
g MR
= SA*110
<.
1,000,000 54000
500,000 TSI Ardvo0
Intel 80396 Intel o @ ARM 3
Motorola 63p#6 ¢ e 4
(e
100,000 Moo : o
50 000 % Qintel 80186 g
O ©intel 8088 °°ARM2 Ag?m
ARM 1
Mg%%ré)\a 5\,‘{)\/ 5016 l\g\/\x
10,000 TMSQ‘UUO o é’gggz NC4016
gCA 1802
5,000 4 Bingorsoso” %
Mgg%g'a %%g Technology
1,000
Q AV A%X A0 A O oV o 60 o N &V N> © 8 O b X O & O O ™ o »
A AP A7 AP AP R DD DR DD DL QRSN NN
ST FFFFFLETLLELCETTTSS S S S S

* *Moore’s Law
* the number of transistors in a dense integrated circuit (IC) doubles about every two years

35

Why use assembly language?

Easier than machine code

Access to all features of target machine

Performance (maybe)

Using mixed languages

Note that assembly language tends to solve toward a high-level language
* Advanced features (“auto” loop control, etc.)
 Libraries

36

void SimdMul(float *a, float *b, float *c, int

{
int limit = (len/SSE_WIDTH) * SSE_WIDTH;

__asm

(

".att_syntax\n\t"

"movq -24(%rbp), %r8\n\t"
"movg -32(%rbp), %rcx\n\t"
"movqg -48(%rbp), %rdx\n\t"

);
(int i = @; i < limit; i += SSE_WIDTH)

dasm

(

".att syntax\n\t'
"movups (%r8), %amm@\n'\t
"movups (%rcx), %xmml\n\t
"mulps %xmml, *amm@\n\t"
"movups %xxm@, (Frdx)\n\t"
"addq %16, %r8\n\t"

"addq $16, %rcx\n\t"

"addq $16, %rdx\n\t"

(int 1 = limit; 1 < len; i++)

c[i] = a[i] * b[i];

Common uses of assembly language

Embedded systems
 Efficiency is critical

Real-time applications
* Timing is critical

Interactive games
e Speed is critical

Low-level tasks, Device drivers
* Direct control is critical

38

Main concepts:

 Hardware/software
* Languages (high-level, assembly, machine)
* How statements are translated from higher to lower levels

* Variety of architectures
e Each has its own instruction set

* Applications of assembly language

39

Lecture Topics:

* Syllabus
* Introduction to Hardware, Software, and Languages

* Setup Instructions

40

Things to do before next lecture

* Complete the syllabus quiz (and make sure you get 100%)
* Complete the Visual Studio Setup

* Do the self-check exercise

* Continue on the assigned readings

41

