
CS 271
Computer Architecture &

Assembly Language

Lecture 12

2/10/22, Thursday

1

Odds and Ends

• Due Sunday 2/13 11:59 pm:
• Assignment 4

2

Lecture Topics:

• Passing Parameters on the System Stack

3

Passing Parameters on the System Stack

4

Quick Review:

• Push

• Pop

• Call

• Ret

5

RET Instruction

• Pops stack into the instruction pointer (EIP)

• Syntax:
• RET

• RET n

• Optional operand n causes n to be added to the stack pointer after EIP is
assigned a value
• Equivalent to popping the return address and n additional bytes off the stack

6

Stack Frame

• Also known as an activation record

• Area of the stack used for a procedure’s return address, passed parameters,
saved registers, and local variables

• Created by the following steps:
• Calling program pushes arguments onto the stack and calls the procedure

• The called procedure pushes EBP onto the stack, and sets EBP to ESP

7

Addressing Modes
• Immediate Constants, literal, absolute address

• Direct Contents of referenced memory address

• Register Contents of register

• Register indirect Access memory through address in a register

• Indexed Array name using element “distance” in
register

• Base-indexed Start address in one register; offset in
another, add and access memory

• Stack Memory area specified and maintained as
a stack; Stack pointer in ESP
register

• Offset Memory address; may be
computed

8

Register Indirect Mode

• [reg] means “contents of memory at the address in reg”

• It is OK to add a constant (named or literal)
• Example: mov [edx+12], eax

• We have used register indirect with esp to reference the value at the top of the system
stack

• Note: register indirect is a memory reference
• There are no memory-memory instruction

• E.g., mov [edx], [eax] is WRONG!

9

Explicit Access to Stack Parameters

• A procedure can explicitly access stack parameters using constant offsets from EBP.
• Example: [ebp + 8]

• EBP is often called the base pointer or frame pointer because it is (should be) set to the
base address of the stack frame

• EBP should not change value during the procedure

• EBP must be restored to its original value when the procedure returns

• Remember that the return address is pushed onto the stack after the parameters are
pushed

• Programmer is responsible for managing the stack.

10

Stack Frame Example

11

Stack Frame Example

12

• Why don’t we just use ESP instead of EBP?
• Pushes and pops inside the procedure might cause us to lose the base of the stack frame.

13

Trouble-Avoidance Tips

• Save and restore registers when they are modified by a procedure.
• Exception: a register that returns a function result

• Do not pass an immediate value or variable contents to a procedure that
expects a reference pointer.
• Dereferencing it as an address will likely cause a general-protection fault.

14

Demo

15

