CS 271
Computer Architecture &
Assembly Language

Lecture 13
Parameter Passing using Stack
Array
Random Number
2/15/22, Tuesday

Odds and Ends

* Program 5 posted

Lecture Topics:

* Passing Parameters on the System Stack

* Introduction to Arrays

* Arrays as Reference Parameters
* Display an Array Sequentially

* “Random” Numbers

Passing Parameters on the System Stack

Recall: RET Instruction
ret <& PP L

* Pops stack into the instruction pointer (EIP)
* Syntax:

* RET

* RET n

* Optional operand n causes n to be added to the stack pointer after EIP is
assigned a value

* Equivalent to popping the return address and n additional bytes off the stack

Recall: Stack Frame

 Also known as an activation record

* Area of the stack used for a procedure’s return address, passed parameters,
saved registers, and local variables

* Created by the following steps:
e Calling program pushes arguments onto the stack and calls the procedure
* The called procedure pushes EBP onto the stack, and sets EBP to ESP

‘*£ are PQ\'N—_KL,—

Recall: Addressing Modes

" ¢ Immediate
* Direct

* Register

* Register indirect

e Stack

e Offset

Constants, literal, absolute address
Contents of referenced memory address

Contents of register

Access memory through address in a register

Memory area specified and maintained as a
stack; Stack pointer in ESP register

Memory address; may be computed

7

Recall: Register Indirect Mode

* [reg] means “contents of memory at the address in reg”

* |tis OK to add a constant (hamed or literal)
 Example: mov [edx+12], eax

* We have used register indirect with esp to reference the value at the top of the system
stack

R p&x =
* Note: register indirect is a memory reference j \ 1
* There are no memory-memory instruction
 E.g, mov [edx], [eax] is WRONG! J
\/

5 &

Recall: Explicit Access to Stack Parameters

A procedure can explicitly access stack parameters using constant offsets from EBP.
 Example: [ebp + 8]

EBP is often called the base pointer or frame pointer because it is (should be) set to the
base address of the stack frame

EBP should not change value during the procedure

EBP must be restored to its original value when the procedure returns

Remember that the return address is pushed onto the stack after the parameters are
pushed

Programmer is responsible for managing the stack.

Stack Frame Example

.data

x DWORD
y DWORD
Z DWORD

. code

==) maln PROC

push
push
push
call

175

37
?

X

y
OFFSET =z

SumTwo

ESP —

10

System Stack

Stack Frame Example

.data

x DWORD
y DWORD
Z DWORD

. code

main PROC

— push
push
push
call

175

37
?

X

y
OFFSET =z

SumTwo

ESP —

11

System Stack

[ESP]

175

Stack Frame Example

.data

x DWORD
y DWORD
Z DWORD

. code

main PROC

push
—> push
push
call

175

37
?

X

y
OFFSET =z

SumTwo

ESP —

12

System Stack

[ESP]

37

[ESP + 4]

175

Stack Frame Example

.data

x DWORD 175
y DWORD 37
z DWORD ?

. code
main PROC
push X
push Y
) push OFFSET =z
call SumTwo

ESP —

13

Note: @ means “address of”

System Stack

[ESP] @ z
ESP + 4] 37
ESP + 8] 175

Stack Frame Example Note: @ means “address of”

.data

x DWORD 175 System Stack

y DWORD 37

z DWORD ?

S, Twe (X, j; QZ)) ESpP —— [ESP] return @

.code

main PROC ESP + 4] @ z
push X : :
push v ESP + 8] 37
push OFFSET z [ESP + 12] 175

) call SumTwo

(Qeldr _)

14

Stack Frame Example

) SumTwo PROC
push ebp
mov ebp, esp
mov eax, [ebp+16]
;175 in eax

add eax, [ebp+12]
;175437 = 212 in eax

mov ebx, [ebp+8]
;@z in ebx

mov [ebx], eax
;store 212 in z

Pop ebp
ret 12
SumTwo ENDP

System Stack

ESP ——

[ESP] return @
ESP + 4] @ z
ESP + 8] 37

[ESP + 12] 175

EBPE\\\\‘

Stack Frame Example

—

SumTwo PROC
push ebp
mov ebp, esp
mov eax, [ebp+16]
;175 in eax

add eax, [ebp+12]
;175437 = 212 in eax

mov ebx, [ebp+8]
;@z in ebx

mov [ebx], eax
;store 212 in z

Pop ebp
ret 12
SumTwo ENDP

System Stack

ESP ——

[ESP] old EBP
[ESP + 4] return @
[ESP + 8] @ z
ESP + 12 37
ESP + 16] 175

EBPlN

Stack Frame Example

SumTwo PROC

push ebp
) mov ebp, esp
mov eax, [ebp+16] SyStem StaCk
;175 in eax
EBP, ESP —— [EBP] old EBP
add eax, [ebp+12]
mov ebx, [ebp+8]
;@z in ebx [EBP + 8] @ L
mov [ebx], eax EBP + 12 37
;store 212 in z
EBP + 16 175
pop ebp
ret 12

SumTwo ENDP

17

EAX 4

Stack Frame Example

175

SumTwo PROC
push ebp
mov ebp, esp

) mov eax, [ebp+16] SyStem StaCk
;175 in eax
EBP, ESP —— [EBP] old EBP
add eax, [ebp+12]
mov ebx, [ebp+8]
;@z in ebx [EBP + 8] @ VA
mov [ebx], eax EBP + 12 37
;store 212 in z
EBP + 16] 175

pop ebp
ret 12

SumTwo ENDP

18

Stack Frame Example

SumTwo PROC
push ebp
mov ebp, esp
mov eax, [ebp+16]
;175 in eax

) add eax, [ebp+12]
;175437 = 212 in eax

mov ebx, [ebp+8]
;@z in ebx

mov [ebx], eax
;store 212 in z

Pop ebp
ret 12
SumTwo ENDP

EAX
212

EBP, ESP —

19

System Stack

[EBP] old EBP
[EBP + 4] return @
[EBP + 8] @ z
EBP + 12 37
EBP + 16] 175

EAX EBX Z

Stack Frame Example

212 @ z
SumTwo PROC
push ebp
mov ebp, esp
mov eax, [ebp+16] SyStem StaCk
;175 in eax
EBP, ESP —— [EBP] old EBP
add eax, [ebp+12]
mov ebx, [ebp+8]
- ;@z in ebx [EBP + 8] @ Z
R hx = CDIR]]
mov [ebx], eax EBP + 12 37
;store 212 in z
EBP + 16 175
pop ebp
ret 12

SumTwo ENDP

20

Stack Frame Example

SumTwo PROC
push ebp
mov ebp, esp
mov eax, [ebp+16]
;175 in eax

add eax, [ebp+12]
;175437 = 212 in eax

mov ebx, [ebp+8]
;@z in ebx

[e
—> mov [ebx] , eax
;store 212 in z

Pop ebp
ret 12
SumTwo ENDP

EAX
212

EBP, ESP —

21

EBX

yA

@ z

212

System Stack

[EBP] old EBP
[EBP + 4] return @
[EBP + 8] @ z
EBP + 12 37
EBP + 16] 175

Stack Frame Example

SumTwo PROC
push ebp
mov ebp, esp
mov eax, [ebp+16]
;175 in eax

add eax, [ebp+12]
;175437 = 212 in eax

mov ebx, [ebp+8]
;@z in ebx

mov [ebx], eax
;store 212 in z

—> pop ebp
ret 12
SumTwo ENDP

EAX EBX z
212 @ z o+ 212
System Stack
ESP —— [ESP] return @
ESP + 4] @ z
ESP + 8 37
[ESP + 12) 175

EBPi\\\\‘

Stack Frame Example

SumTwo PROC
push ebp
mov ebp, esp
mov eax, [ebp+16]
;175 in eax

add eax, [ebp+12]
;175437 = 212 in eax

mov ebx, [ebp+8]
;dz in ebx

mov [ebx], eax
;store 212 in z

pop ebp
——> ret 12
SumTwo ENDP

EIP

return @

212

System Stack

ESP ——

EBPz\

* Why don’t we just use ESP instead of EBP?
* Pushes and pops inside the procedure might cause us to lose the base of the stack frame.

Trouble-Avoidance Tips

* Save and restore registers when they are modified by a procedure.
e Exception: a register that returns a function result

* Do not pass an immediate value or variable contents to a procedure that
expects a reference pointer.

* Dereferencing it as an address will likely cause a general-protection fault.

25

Demo

26

Lecture Topics:

* Introduction to Arrays

* Arrays as Reference Parameters
* Display an Array Sequentially

* “Random” Numbers

27

Introduction to Arrays

28

Array in MASM

e Declaration (in data segment)

MAX SIZE = 100

.data
list DWORD MAX SIZE DUP (2)
dnme ‘td_?e — .\“"t\'ql

* Defines an uninitializéd array named /ist with space for 100 32-bit integers

A

* Array elements are in contiguous memory

29

Array in MASM [T - - \\
/\\]st[aj
* Declaration S tC oo 7
MAX SIZE = 100
.data
list DWORD MAX SIZE DUP (?) 0
count DWORD o) £

* What happen (in HLL) if we reference list[100]?

 Compile-time error

* What happens in MASM if we go beyond the end of the array?
* Not easy to predict

30

Array Address Calculations

* Array declaration defines a name for the first element only
* HLLs referenceitas 1ist[0] _~ =% f ‘,St

gttk}_},ae(,(_t,_\()

* All other elements are accessed by calculating the actual address

* General formula for array address calculation:
e Address of list[k] = list + (k * sizeof element)

* Example: |12 TGN
* Address of 41" element (list[3]) is: address of list + (3 * sizeof DWORD)

31

Addressing Modes

* Immediate Constants, literal, absolute address

* Direct Contents of referenced memory address

* Register Contents of register

e Register indirect Access memory through address in a register

* Indexed Array name using element “distance” in register
* Base-indexed Start address in one register; offset in

another, add and access memory

Stack Memory area specified and maintained as a
stack; Stack pointer in ESP register

Offset Memory address; may be computed

32

Array References in MASM

* Several methods for accessing specific array elements
* Indexed
* Register indirect
* Base-indexed

33

EL‘ K Etll

Indexed Addressing ﬁ% j) \ @

Array name, with “distance” to element in a register
* Used for global array references (not used in Program #5)

* Examples:
mov edi,O rhigh-level notation
mov list[edi] ,eax ; 1s list[O0O]

—
. - |
add edi 4 * see ;ﬁi@.&q
mov list[edi] ,ebx ;list[1]

This means “add the value in [] to address of list”

*Note: add 4 because these array elements are DWORD
* If BYTE, add 1
* If WORD, add 2
 I[fQWORD, add 8
* Etc.

34

Register Indirect Addressing

e Actual address of array element in register

* Used for referencing array elements in procedures ebP] oA =hp
 Examples: ot | relmO
. ghp | @lisL
* In calling procedure...
push OFFSET 1list (
C_oul T |

* In called procedure... (example only)

pesh _FBRY

... ;8et up stack frame
movesi, [ebp+8]

mov eax, [esi]

addesi, 4

add eax, [esi]
addesi,{E'

mov [esi] ,eax

; get address
; get 1list[O0]

; add list[1l]
e

» send result

o o]

e

2 4Axs \@‘i__ﬁt
=+ O |
of list into esi [/\

into eax f-,K /'Q l_‘&_'hh_

e ——

to eax

’l'g tis) = | L] | i

to 1ist[5]

Base-indexed Addressing
ey

e Starting address in one register, offset in another; add and access memory [@ng \

* Used for referencing array elements in procedures
C Ox
* Examples: —Aakp | 20
* In calling procedure ... -y r (&
push OFFSET list ebps | = kst

* In called procedure ... (example only) _/_j

. ;set up stack frame
mov edx, [ebp+8] ; get address of list into edx
mov ecx, 20

mov eax, [edxt+ecx] ; get 1list[5] into eax
AN N - — .
mov ebx, 4 lnS‘iLs-S 1 =it L]

add eax, [e_t‘:]_x+gbx] ; add list[l] to eax

mov [edx+ecx] ,eax ; send result to list[5]
~__—— - 36

Passing Arrays by Reference

* Never pass an array by value!!!
e Suppose that an ArrayFill procedure fills an array with 32-bit integers

* The calling program passed the address of the array, along with count of the number of
array elements:

COUNT = 100

.data

list DWORD COUNT DUP(?)
. code

push OFFSET list
push COUNT
call ArrayFill

37

Passing Arrays by Reference

* ArrayFill can refence an array without knowing the array’s name:

ArrayFill PROC
push ebp
mov ebp,esp
mov edi, [ebp+12] ;@list in edi
mov ecx, [ebp+8] ;value of count in ecx
; ... etc.

* edi points to the beginning of the array, so it’s easy to use a loop to access each array
element.

* Style note: We use edi because the array is the “destination”

38

Passing Arrays by Reference

* This ArrayFill uses register indirect addressing:

ArrayFill PROC

push ebp

mov ebp,esp

mov edi, [ebp+12] ;@list 1n edi

mov ecx, [ebp+8] ;value of count 1n ecx
more:

; Code to generate a random number in eax
; goes here.

mov [edi] ,eax

add edi, 4

loop more

pop ebp
ret 8
ArrayFill ENDP

39

Passing Arrays by Reference

* This ArrayFill uses base-indexed addressing, saves registers:

ArrayFill PROC

pushad ;save all registers

mov ebp,esp

mov edx, [ebp+40] ;@list 1n edx

mov ebx,0 ;71ndex” 1n ebx

mov ecx, [ebp+36] ;value of count 1n ecx
more:

; Code to generate a random number in eax
; goes here.

mov [edx+ebx] ,eax

add ebx,4

loop more

popad ;restore all registers
ret 8

ArrayFill ENDP
40

Lecture Topics:

* Passing Parameters on the System Stack

* Introduction to Arrays

* Arrays as Reference Parameters
* Display an Array Sequentially

* “Random” Numbers

41

Setup in Calling Procedure

.data
list
count

.code

-
r L] L L

DWORD
DWORD

100 DUP (?)

0

rcode to 1nitialize list and count

;set up parameters and call display

push
push
call

OFFSET list
count
display

r@list
rnumber of elements

42

Display: version 0.1 (register indirect)

display PROC
push ebp
mov ebp,esp
mov esi, [ebp+12] ;@list
mov ecx, [ebp+8] ;ecx is loop control
more:
mov eax, esi ;yget current element
call WriteDec
call Crilf
add esi,KL4 ;next element
loop more
endMore:
pop ebp
ret 8

display ENDP

43

Display: version 0.2 (base-indexed)

display PROC
push ebp
mov ebp ,esp
mov esi, [ebp+12] ;@list
mov ecx, [ebp+8] ;ecx is loop control
mov edx, 0 ;edx 1s element “pointer”
more:
mov eax, esitedx ;yget current element
call WriteDec
call Crlf
add edx,h 4 ;hext element
loop more
endMore:
pop ebp
ret 8

display ENDP

44

Random Numbers

* Irving library has random integer generator
e “pseudo-random” numbers

* Randomize procedure
* Initialize sequence based on system clock (random seed)
e Call once at the beginning of the program
* Without Randomize, program gets the same sequence every time it is executed

45

Limiting Random Values

* RandomRange procedure
* Accepts N>0in eax
e Returns random integer in [0 ... N-1] in eax

* To generate a random number in [lo ... hi]:
* Find number of integer possible in [lo ... hi]: range=hi—lo + 1
* Put rangein eax, and call RandomRange
e Resultineaxisin[0...range -1]
 Addlo to eax.

46

RandomRange Example

 Get arandom integer in range [18 ... 31]

mov eax, hi ;31
sub eax, lo ;31-18 = 13
inc eax ;14

call RandomRange ;eax in [0..13]

add eax, lo ;yeax in [18..31]

47

Demo

48

