
CS 271
Computer Architecture &

Assembly Language
Lecture 13

Parameter Passing using Stack

Array

Random Number

2/15/22, Tuesday

1

Odds and Ends

• Program 5 posted

2

Lecture Topics:

• Passing Parameters on the System Stack

• Introduction to Arrays

• Arrays as Reference Parameters

• Display an Array Sequentially

• “Random” Numbers

3

Passing Parameters on the System Stack

4

Recall: RET Instruction

• Pops stack into the instruction pointer (EIP)

• Syntax:
• RET

• RET n

• Optional operand n causes n to be added to the stack pointer after EIP is
assigned a value
• Equivalent to popping the return address and n additional bytes off the stack

5

Recall: Stack Frame

• Also known as an activation record

• Area of the stack used for a procedure’s return address, passed parameters,
saved registers, and local variables

• Created by the following steps:
• Calling program pushes arguments onto the stack and calls the procedure

• The called procedure pushes EBP onto the stack, and sets EBP to ESP

6

Recall: Addressing Modes
• Immediate Constants, literal, absolute address

• Direct Contents of referenced memory address

• Register Contents of register

• Register indirect Access memory through address in a register

• Indexed Array name using element “distance” in register

• Base-indexed Start address in one register; offset in
another, add and access memory

• Stack Memory area specified and maintained as a
stack; Stack pointer in ESP register

• Offset Memory address; may be computed

7

Recall: Register Indirect Mode

• [reg] means “contents of memory at the address in reg”

• It is OK to add a constant (named or literal)
• Example: mov [edx+12], eax

• We have used register indirect with esp to reference the value at the top of the system
stack

• Note: register indirect is a memory reference
• There are no memory-memory instruction

• E.g., mov [edx], [eax] is WRONG!

8

Recall: Explicit Access to Stack Parameters

• A procedure can explicitly access stack parameters using constant offsets from EBP.
• Example: [ebp + 8]

• EBP is often called the base pointer or frame pointer because it is (should be) set to the
base address of the stack frame

• EBP should not change value during the procedure

• EBP must be restored to its original value when the procedure returns

• Remember that the return address is pushed onto the stack after the parameters are
pushed

• Programmer is responsible for managing the stack.

9

Stack Frame Example

10

System Stack
.data

x DWORD 175

y DWORD 37

Z DWORD ?

.code

main PROC

push x

push y

push OFFSET z

call SumTwo
ESP

Stack Frame Example

11

System Stack

[ESP] 175

.data

x DWORD 175

y DWORD 37

Z DWORD ?

.code

main PROC

push x

push y

push OFFSET z

call SumTwo
ESP

Stack Frame Example

12

System Stack

[ESP] 37

[ESP + 4] 175

.data

x DWORD 175

y DWORD 37

Z DWORD ?

.code

main PROC

push x

push y

push OFFSET z

call SumTwo

ESP

Stack Frame Example

13

System Stack

[ESP] @ z

[ESP + 4] 37

[ESP + 8] 175

.data

x DWORD 175

y DWORD 37

z DWORD ?

.code

main PROC

push x

push y

push OFFSET z

call SumTwo

ESP

Stack Frame Example

14

System Stack

[ESP] return @

[ESP + 4] @ z

[ESP + 8] 37

[ESP + 12] 175

.data

x DWORD 175

y DWORD 37

z DWORD ?

.code

main PROC

push x

push y

push OFFSET z

call SumTwo

ESP

Stack Frame Example

15

System Stack

[ESP] return @

[ESP + 4] @ z

[ESP + 8] 37

[ESP + 12] 175

SumTwo PROC

push ebp

mov ebp, esp

mov eax, [ebp+16]

;175 in eax

add eax, [ebp+12]

;175+37 = 212 in eax

mov ebx, [ebp+8]

;@z in ebx

mov [ebx], eax

;store 212 in z

pop ebp

ret 12

SumTwo ENDP

ESP

z

EBP

Stack Frame Example

16

System Stack

[ESP] old EBP

[ESP + 4] return @

[ESP + 8] @ z

[ESP + 12] 37

[ESP + 16] 175

SumTwo PROC

push ebp

mov ebp, esp

mov eax, [ebp+16]

;175 in eax

add eax, [ebp+12]

;175+37 = 212 in eax

mov ebx, [ebp+8]

;@z in ebx

mov [ebx], eax

;store 212 in z

pop ebp

ret 12

SumTwo ENDP

ESP

z

EBP

Stack Frame Example

17

System Stack

[EBP] old EBP

[EBP + 4] return @

[EBP + 8] @ z

[EBP + 12] 37

[EBP + 16] 175

SumTwo PROC

push ebp

mov ebp, esp

mov eax, [ebp+16]

;175 in eax

add eax, [ebp+12]

;175+37 = 212 in eax

mov ebx, [ebp+8]

;@z in ebx

mov [ebx], eax

;store 212 in z

pop ebp

ret 12

SumTwo ENDP

EBP, ESP

z

Stack Frame Example

18

System Stack

[EBP] old EBP

[EBP + 4] return @

[EBP + 8] @ z

[EBP + 12] 37

[EBP + 16] 175

SumTwo PROC

push ebp

mov ebp, esp

mov eax, [ebp+16]

;175 in eax

add eax, [ebp+12]

;175+37 = 212 in eax

mov ebx, [ebp+8]

;@z in ebx

mov [ebx], eax

;store 212 in z

pop ebp

ret 12

SumTwo ENDP

EBP, ESP

z

175

EAX

Stack Frame Example

19

System Stack

[EBP] old EBP

[EBP + 4] return @

[EBP + 8] @ z

[EBP + 12] 37

[EBP + 16] 175

SumTwo PROC

push ebp

mov ebp, esp

mov eax, [ebp+16]

;175 in eax

add eax, [ebp+12]

;175+37 = 212 in eax

mov ebx, [ebp+8]

;@z in ebx

mov [ebx], eax

;store 212 in z

pop ebp

ret 12

SumTwo ENDP

EBP, ESP

z

212

EAX

Stack Frame Example

20

System Stack

[EBP] old EBP

[EBP + 4] return @

[EBP + 8] @ z

[EBP + 12] 37

[EBP + 16] 175

SumTwo PROC

push ebp

mov ebp, esp

mov eax, [ebp+16]

;175 in eax

add eax, [ebp+12]

;175+37 = 212 in eax

mov ebx, [ebp+8]

;@z in ebx

mov [ebx], eax

;store 212 in z

pop ebp

ret 12

SumTwo ENDP

EBP, ESP

z

212

EAX

@ z

EBX

Stack Frame Example

21

System Stack

[EBP] old EBP

[EBP + 4] return @

[EBP + 8] @ z

[EBP + 12] 37

[EBP + 16] 175

SumTwo PROC

push ebp

mov ebp, esp

mov eax, [ebp+16]

;175 in eax

add eax, [ebp+12]

;175+37 = 212 in eax

mov ebx, [ebp+8]

;@z in ebx

mov [ebx], eax

;store 212 in z

pop ebp

ret 12

SumTwo ENDP

EBP, ESP

212

z

212

EAX

@ z

EBX

Stack Frame Example

22

System Stack

[ESP] return @

[ESP + 4] @ z

[ESP + 8] 37

[ESP + 12] 175

SumTwo PROC

push ebp

mov ebp, esp

mov eax, [ebp+16]

;175 in eax

add eax, [ebp+12]

;175+37 = 212 in eax

mov ebx, [ebp+8]

;@z in ebx

mov [ebx], eax

;store 212 in z

pop ebp

ret 12

SumTwo ENDP

ESP

212

z

212

EAX

@ z

EBX

EBP

Stack Frame Example

23

System Stack

SumTwo PROC

push ebp

mov ebp, esp

mov eax, [ebp+16]

;175 in eax

add eax, [ebp+12]

;175+37 = 212 in eax

mov ebx, [ebp+8]

;@z in ebx

mov [ebx], eax

;store 212 in z

pop ebp

ret 12

SumTwo ENDP

ESP

212

z

return @

EIP

EBP

• Why don’t we just use ESP instead of EBP?
• Pushes and pops inside the procedure might cause us to lose the base of the stack frame.

24

Trouble-Avoidance Tips

• Save and restore registers when they are modified by a procedure.
• Exception: a register that returns a function result

• Do not pass an immediate value or variable contents to a procedure that
expects a reference pointer.
• Dereferencing it as an address will likely cause a general-protection fault.

25

Demo

26

Lecture Topics:

• Passing Parameters on the System Stack

• Introduction to Arrays

• Arrays as Reference Parameters

• Display an Array Sequentially

• “Random” Numbers

27

Introduction to Arrays

28

Array in MASM

• Declaration (in data segment)

• Defines an uninitialized array named list with space for 100 32-bit integers

• Array elements are in contiguous memory

29

Array in MASM

• Declaration

• What happen (in HLL) if we reference list[100]?
• Compile-time error

• What happens in MASM if we go beyond the end of the array?
• Not easy to predict

30

Array Address Calculations

• Array declaration defines a name for the first element only
• HLLs reference it as list[0]

• All other elements are accessed by calculating the actual address

• General formula for array address calculation:
• Address of list[k] = list + (k * sizeof element)

• Example:
• Address of 4th element (list[3]) is: address of list + (3 * sizeof DWORD)

31

Addressing Modes
• Immediate Constants, literal, absolute address

• Direct Contents of referenced memory address

• Register Contents of register

• Register indirect Access memory through address in a register

• Indexed Array name using element “distance” in register

• Base-indexed Start address in one register; offset in
another, add and access memory

• Stack Memory area specified and maintained as a
stack; Stack pointer in ESP register

• Offset Memory address; may be computed

32

Array References in MASM

• Several methods for accessing specific array elements
• Indexed

• Register indirect

• Base-indexed

33

Indexed Addressing

• Array name, with “distance” to element in a register
• Used for global array references (not used in Program #5)

• Examples:

• This means “add the value in [] to address of list”

• *Note: add 4 because these array elements are DWORD
• If BYTE, add 1
• If WORD, add 2
• If QWORD, add 8
• Etc.

34

Register Indirect Addressing

• Actual address of array element in register
• Used for referencing array elements in procedures

• Examples:
• In calling procedure…

push OFFSET list

• In called procedure… (example only)

35

Base-indexed Addressing

• Starting address in one register, offset in another; add and access memory
• Used for referencing array elements in procedures

• Examples:
• In calling procedure …

push OFFSET list

• In called procedure … (example only)

36

Passing Arrays by Reference

• Never pass an array by value!!!

• Suppose that an ArrayFill procedure fills an array with 32-bit integers

• The calling program passed the address of the array, along with count of the number of
array elements:

37

Passing Arrays by Reference

• ArrayFill can refence an array without knowing the array’s name:

• edi points to the beginning of the array, so it’s easy to use a loop to access each array
element.

• Style note: We use edi because the array is the “destination”

38

Passing Arrays by Reference

• This ArrayFill uses register indirect addressing:

39

Passing Arrays by Reference

• This ArrayFill uses base-indexed addressing, saves registers:

40

Lecture Topics:

• Passing Parameters on the System Stack

• Introduction to Arrays

• Arrays as Reference Parameters

• Display an Array Sequentially

• “Random” Numbers

41

Setup in Calling Procedure

42

Display: version 0.1 (register indirect)

43

Display: version 0.2 (base-indexed)

44

Random Numbers

• Irving library has random integer generator
• “pseudo-random” numbers

• Randomize procedure
• Initialize sequence based on system clock (random seed)

• Call once at the beginning of the program

• Without Randomize, program gets the same sequence every time it is executed

45

Limiting Random Values

• RandomRange procedure
• Accepts N>0 in eax

• Returns random integer in [0 … N-1] in eax

• To generate a random number in [lo … hi]:
• Find number of integer possible in [lo … hi]: range = hi – lo + 1

• Put range in eax, and call RandomRange

• Result in eax is in [0 … range -1]

• Add lo to eax.

46

RandomRange Example

• Get a random integer in range [18 … 31]

47

Demo

48

