
CS 271
Computer Architecture & 

Assembly Language

Lecture 15

2/22/22, Tuesday

1



Odds and Ends

• Clarifications
• Avoid line-by-line comments

• Post-condition: register changed + more… 

• Final Project will be posted before Thursday’s lecture
• Due Tuesday, March 15th 11:59 pm

• More info later

2



Lecture Topics:

• Data-Related Operators

• Multi-Dimensional Arrays

• String Processing

• Lower-Level Programming

• How ReadInt Works

3



Data-Related Operators

4



Data-Related Operators

• OFFSET Operator

• PTR Operator

• TYPE Operator

• LENGTHOF Operator

• SIZEOF Operator

5



OFFSET Operator 

• OFFSET returns the distance in bytes, of a label from the beginning of its 
enclosing segment

• The operating system adds the segment address (from the segment 
register)

6



OFFSET Examples

• Assume that the data segment begins at 00404000h:

7



PTR Operator

• Overrides the default type of a label (variable)

• Provides the flexibility to access part of a variable. 

8



PTR Operator Examples

• Recall that little endian order is used when storing data in memory. 

• In memory: 

9



PTR Operator (cont.)

• PTR can also be used to combine elements of a smaller data type and move them into a 
larger operand. The IA-32 CPU will automatically reverse the bytes. 

10



TYPE Operator

• The TYPE operator returns the size, in bytes, of a single element of a data declaration.

11



LENGTHOF Operator

• The LENGTHOF operator counts the number of elements in a single data declaration. 

12



SIZEOF Operator

• The SIZEOF operator returns a value that is equivalent to multiplying LENGTHOF by TYPE. 
i.e., size in bytes.

13



Spanning Multiple Lines

• A data declaration spans multiple lines if each line (except the last) ends with a comma.

• The LENGTHOF and SIZEOF operators include all lines belonging to the declaration:

14



Spanning Multiple Lines

• In the following example, list identifies only the first DWORD declaration. 

• Compare the values returned by LENGTHOF and SIZEOF here to those in the previous 
slide:

15



Index Scaling

• You can scale an indirect or indexed operand to the offset of an array element. This is 
done by multiplying the index by the array’s TYPE

16



Pointers

• You can declare a pointer variable that contains the offset of another variable 

• The effect is the same as mov esi, OFFSET list

• Note: [ptr] is an invalid reference!! Why?

17



Pointers

• You can declare a pointer variable that contains the offset of another variable 

18



Summing an Integer Array 

• The following code calculates the sum of an array of 32-bit integers (register indirect 
mode). 

19



Summing an Integer Array 

• Alternate code (indexed mode)

20



Multi-Dimensional Arrays
String Processing

21



Two-Dimensional Array (Matrix)

• Example declaration:

Matrix DWORD 5 DUP (3 DUP(?))

;15 elements

• A matrix is an array of arrays

• Row major order 
• Row index first (5 rows, 3 columns)

• i.e., 5 rows, 3 elements per row

• Example HLL reference: Matrix[0][2]
• Last element in first row … etc. 

• In assembly language, it’s just a set of contiguous memory locations 

22



Two-Dimensional Array (Matrix)

• An element’s address is calculated as the base address plus an offset

• BaseAddress + elementSize * [(row# * elementsPerRow) + column#]

• Example: Suppose Matrix is at address 20A0h

23



Matrix Addresses (hexadecimal)

• Matrix elements are arranged in sequential addresses in row-major order

24



Higher Dimensions

• A 3-dimensional array is an array of matrices 

• A 4-dimensional array is an array of 3-dimensional arrays

• … etc., no theoretical limit
• Practically and readability rule

• Address calculations can be extrapolated from matrix address calculations 

• Contiguous memory in “highest-dimension” major order

25



String Primitives 

• A string is an array of BYTE

• In most cases, an extra byte is needed for the zero-byte terminator 

• MASM has some “string primitives” for manipulating strings byte-by-byte
• Most important are:

• There are many others
• Explore on your own

26



lodsb and stosb

• lodsb
• Moves byte at [esi] into the AL register

• Increments esi if direction flag is 0

• Decrements esi if direction flag is 1

• stosb
• Moves byte in the AL register to memory at [edi]

• Increments edi if direction flag is 0

• Decrements edi if direction flag is 1

27



cld and std

• cld
• Sets direction flag to 0

• Causes esi and edi to be incremented by lodsb and stosb

• Used for moving “forward” through an array

• std
• Sets direction flag to 1

• Causes esi and edi to be decremented by lodsb and stosb

• Used for moving “backward” through an array

28



Demo

• Shows capitalizing and reversing a string

29



Lower-Level Programming 
How ReadInt Works

30



Lower-Level Programming

• All keyboard input is character
• Digits are character codes 48-57

• ‘0’ is character number 48

• ‘1’ is 49 … ‘9’ is 57

• Cannot do arithmetic with string representations

• What does ReadInt do? (Irvine’s library)
• Gets a string of digits (characters)

• Converts digits to numeric values 

• How does ReadInt do it?

31



ReadInt Algorithm (pseudo-code)

get str

x = 0

for k = 0 to (len(str)-1)

if 48 <= str[k] <= 57

x = 10 * x + (str[k] – 48)

else

break

32


