CS 271
Computer Architecture &
Assembly Language

Lecture 17/
Macros

Recursion
3/1/22, Tuesday

Lecture Topics:

* Macros

e Recursion

Macros

Procedure (Review) {

» Separate, named sections of code | /
* May have parameters

* Calling mechanism —
* Return mechanism

e During assembly, procedure code is translated once

e During execution, control is transferred to the procedure at each call (activation
record, etc.). May be called many times.

* All labels, etc. are local to the activation record.

Macro

» Separate, named section of code
* May have parameters

* Once defined, it can be invoked (called) one or more times
* Use pameonly (don’t use CALL)
* During assembly, entire macro code is substituted for each call (expansion)

e Similar to a constant
* Invisible to the programmer

Defining Macros

* A macro must be defined before it can be invoked (i.e., in the program file,
the definition must precede any invocations).

* Parameters are optional.
e Each parameter follows the rules for identifiers.
* Syntax:
! v

macroname MACRO [param-1, param-2,...]

statement-1ist

ENDM

To——

Invoking Macros

* To invoke a macro, just give the name and the arguments (if any).
e Each argument matches a declared parameter

* Each parameter is replaced by its corresponding argument when the macro is
expanded.

* When a macro expands, it generates assembly language source code

Example Macro Definition and Call

* Sets up registers and uses Irvine’ library WriteString

mWriteStr MACRO buffer
v/ push edx)
mov edx,OFFSET buffer
call WriteString
vV'pop edx
ENDM
.data
strl BYTE "Welcome!",10,13,0
str2 BYTE "Please tell me your name ",0

. code

mWriteStr strl

mWriteStr str2

N

Example Macro Expansion

* The expanded code shows how the strl argument replaced the parameter named
buffer:

mWriteStr MACRO buffer
push edx
mov edx,OFFSET buffer
call WriteString
pop edx

ENDM

push edx v
mov edx,OFFSET strl
call WriteString
pop edx

R R R PR

Example Macro Definition and Call

 The mReadStr macro provides a convenient wrapper around ReadString procedure calls.

mReadStr MACRO varName
push ecx T
push edx
mov edx,OFFSET varName
mov ecx, SIZEOF wvarName
call ReadString
pop edx
pop ecx

ENDM

.data

firstName BYTE 30 DUP(?)

.code

mReadStr firstName

A More Complex Macro

sSseqg mnacro

mov
mov

test:

e =
cmp
Jg
call
inc
Jmp

quit:

endm

a, b
eax,a
ebx,b

eax,ebx
quit
WriteDec
eax

test

Print a sequence

from a to b

if a <= b
print a and repeat

otherwise quit

11

What’s the Problem?

* Code is expanded for each call

* |If the macro is called more than once ...

Duplicate labels

12

A More Complex Macro

seq

test:

quit:
endm

macro a, b
mov eax,a
mov ebx,b

cmp eax,ebx
Jg quit

call WriteDec
inc eax

Jmp test

Print a sequence

from a to b

if a <= b
print a and repeat

otherwise quit

13

Duplicate Labels

* You can specify that a label is LOCAL
* MASM handles the problem by appending a unique number to the label

Seq macro a, b
LOCAL test
LOCAL quit

; Print a sequence

mov eax,a ; from a to b
mov ebx,b

test:
cmp eax, ebx ; 1f a <= b

Jjg quit

14

Parameters

* Arguments are substituted exactly as entered, so any valid argument can be used
* There is no checking for memory, registers, or literals

* Example calls to seq:

seq X,Y ;memory
seq ecx ,edx ;registers

seq 1,20 rliterals

15

Another Problem i\ <.,

seq

test:

quit:
endm

macro

mowv

mowv

cmp

Jg

call

inc

Jmp

a, b
eax,a
ebx,b

eax,ebx
quit
WriteDec
eax

test

Print a sequence

from a to b

if a <=b
print a and repeat

otherwise quit

* What if macro is called with conflicting register parameters:

* E.g,

seq

ebx, eax

* This macro would always print one number.

16

Macro vs. Procedure

e Macros are very convenient, easy to understand

* Macros actually execute faster than procedures
* No return address, stack manipulation, etc.

* Macros are invoked by name

* Parameter are “in-line”
\2%7 * Macro does not have a ret statement (why?)

 Why would you ever use a procedure instead of macro?

* |f the macro is called many times, the assembler produces “fat code”
* Invisible to the programmer
* Each macro call expands the program code by the length of the macro code

17

Macro vs. Procedure

e Use a macro for short code that is called “a few” times, and uses only a few registers.

Use a procedure for more complex tasks or code that is called “many” times.
* The terms “few” and “many” are relative to the size of the whole program

For both: Save registers!

Is it OK to invoke a macro inside of a loop that executes 100 times?

Is it OK to invoke a procedure inside of a loop that executes 100 times?

18

Demo

* Shows macros, macro calls, and macro parameters

19

Recursion

20

Recursion

* Many processes are defined by using previous results of the same process
 Example: summation (a, b) whena<=b

e |terative definition:
 Summation(a, b)=a+ (a+1)+(a+2)+..+b
e Recursive definition:

Recursion

* Note that the definition has two parts

Base case Recursive part /—

Recursive in Computer Programs

e Recursion occurs in programs when:
e A procedure calls itself
* Procedure A calls procedure B, which in turn calls procedure A
* Calls are repeated in a cycle of procedure calls

e Recursion in programs mirrors recursive definitions

23

Example (pseudo-code)

function summation (a,b) returns sum of
integers from a to b.

preconditions: a <= b

function summation (int a, int b):
1f a ==
return a

else return a + summation (a+l,b)

Demo

e Recursive version of summation problem

* |ssues:

* Using stack frames™ for recursion is essential.
 Why?
* What causes stack overflow?
* Why pass all 3 parameters (since 2 of them never change)?

*stack frame, activation frame, activation record

25

. . -1o) =/
Recursion Warnings o= |

* A good mathematical recursive definition does not necessarily imply a recursive

procedure. |:‘<n) = - X F -2

* Example: Fibonacci sequence

e Be sure that

* The base case is defined FLSB l/:(_llaj T P C3] y

* The base case is reachable

* The recursive calls approach the base case — F—L% _)_h}:L _3___)' —l—l j-_t_-i)\ 1HL

* Infinite (or too much) recursion results in “stack overflow”_

= [y FOO 1Ay

* What would happen with a “recursive” macro? :_“4) e \

26

