
CS 271
Computer Architecture &

Assembly Language

Lecture 17

Macros

Recursion

3/1/22, Tuesday

1

Lecture Topics:

• Macros

• Recursion

2

Macros

3

Procedure (Review)

• Separate, named sections of code
• May have parameters

• Calling mechanism

• Return mechanism

• During assembly, procedure code is translated once

• During execution, control is transferred to the procedure at each call (activation
record, etc.). May be called many times.

• All labels, etc. are local to the activation record.

4

Macro

• Separate, named section of code
• May have parameters

• Once defined, it can be invoked (called) one or more times
• Use name only (don’t use CALL)

• During assembly, entire macro code is substituted for each call (expansion)
• Similar to a constant

• Invisible to the programmer

5

Defining Macros

• A macro must be defined before it can be invoked (i.e., in the program file,
the definition must precede any invocations).

• Parameters are optional.

• Each parameter follows the rules for identifiers.

• Syntax:

6

Invoking Macros

• To invoke a macro, just give the name and the arguments (if any).
• Each argument matches a declared parameter

• Each parameter is replaced by its corresponding argument when the macro is
expanded.

• When a macro expands, it generates assembly language source code

7

Example Macro Definition and Call

• Sets up registers and uses Irvine’ library WriteString

8

Example Macro Expansion

• The expanded code shows how the str1 argument replaced the parameter named
buffer:

9

Example Macro Definition and Call

• The mReadStr macro provides a convenient wrapper around ReadString procedure calls.

10

A More Complex Macro

11

What’s the Problem?

• Code is expanded for each call

• If the macro is called more than once …

Duplicate labels

12

A More Complex Macro

13

Duplicate Labels

• You can specify that a label is LOCAL

• MASM handles the problem by appending a unique number to the label

14

Parameters

• Arguments are substituted exactly as entered, so any valid argument can be used

• There is no checking for memory, registers, or literals

• Example calls to seq:

15

Another Problem

• What if macro is called with conflicting register parameters:

• E.g., seq ebx, eax

• This macro would always print one number.

16

Macro vs. Procedure

• Macros are very convenient, easy to understand

• Macros actually execute faster than procedures
• No return address, stack manipulation, etc.

• Macros are invoked by name
• Parameter are “in-line”

• Macro does not have a ret statement (why?)

• Why would you ever use a procedure instead of macro?

• If the macro is called many times, the assembler produces “fat code”
• Invisible to the programmer

• Each macro call expands the program code by the length of the macro code

17

Macro vs. Procedure

• Use a macro for short code that is called “a few” times, and uses only a few registers.

• Use a procedure for more complex tasks or code that is called “many” times.
• The terms “few” and “many” are relative to the size of the whole program

• For both: Save registers!

• Is it OK to invoke a macro inside of a loop that executes 100 times?

• Is it OK to invoke a procedure inside of a loop that executes 100 times?

18

Demo

• Shows macros, macro calls, and macro parameters

19

Recursion

20

Recursion

• Many processes are defined by using previous results of the same process

• Example: summation (a, b) when a <= b

• Iterative definition:
• Summation(a, b) = a + (a+1) + (a+2) + … + b

• Recursive definition:

21

Recursion

• Note that the definition has two parts

Base case Recursive part

22

Recursive in Computer Programs

• Recursion occurs in programs when:
• A procedure calls itself

• Procedure A calls procedure B, which in turn calls procedure A

• Calls are repeated in a cycle of procedure calls

• Recursion in programs mirrors recursive definitions

23

Example (pseudo-code)

24

Demo

• Recursive version of summation problem

• Issues:
• Using stack frames* for recursion is essential.

• Why?

• What causes stack overflow?

• Why pass all 3 parameters (since 2 of them never change)?

*stack frame, activation frame, activation record

25

Recursion Warnings

• A good mathematical recursive definition does not necessarily imply a recursive
procedure.
• Example: Fibonacci sequence

• Be sure that
• The base case is defined

• The base case is reachable

• The recursive calls approach the base case

• Infinite (or too much) recursion results in “stack overflow”

• What would happen with a “recursive” macro?

26

