
CS 271
Computer Architecture &

Assembly Language
Lecture 2

Intro to IA-32 and MASM

1/6/22, Thursday

1

Due Reminder

• Week 1 Summary Exercise:
• Due Sunday 1/9 11:59 pm on Canvas

2

Lecture Topics:

• How computer hardware works?

• Introduction to Intel IA-32 architecture

• Introduction to MASM assembly language

• Writing a MASM program

3

Preliminaries

• Inside a computer, information is represented electrically
• Smallest unit of information is a switch (may be on or off)

• We often represent “off” as 0 and “on” as 1, so a single switch represents a
binary digit, and is called a “bit”.

• Different combinations of switches represent different information
• A group of 8 bits is called a byte

4

5

Main parts of the CISC diagram
(Complex Instruction Set Computer)

• Peripheral Devices:
External devices:
• Store/retrieve data (non-

volatile storage)

• Convert data between
human-readable and
machine-readable forms

6

Main parts of the CISC diagram
(Complex Instruction Set Computer)

• I/O Unit:
Hardware/software
functions:
• Communicate between

CPU/Memory and
peripheral devices

7

Main parts of the CISC diagram
(Complex Instruction Set Computer)

• Main Memory Unit: Cells with
addresses:
• Store programs and data

currently being used by the CPU
(volatile storage)

8

Main parts of the CISC diagram
(Complex Instruction Set Computer)

• CPU: Central Processing
Unit:
• Execute machine

instructions

9

Components / Terms

• Bus: parallel “wires” for
transferring a set of electrical
signals simultaneously
• Internal: Transfers signals among

CPU components

• Control: Carries signals for
memory and I/O operations

• Address: Links to specific
memory locations

• Data: Carries data CPU ➔
memory

10

Components / Terms

• Register: fast local memory inside
the CPU

• ALU: Arithmetic Logic Unit

• Microprogram: sequence of micro-
instructions (implemented in
hardware) required to execute a
machine instruction

• Micromemory: the actual hardware
circuits that implement the machine
instructions as microprograms

11

Registers

• Control: dictates current
state of the machine

12

Registers

• Status: indicates status of
operation (error, overflow…)

13

Registers

• MAR: Memory Address
Register (holds address of
memory location currently
referenced)

• MDR: Memory Data Register:
holds data being sent to or
retrieved from the memory
address in the MAR

14

Registers

• IP: Instruction Pointer (Holds
memory address of next
instructions)

• IR: Instruction Register (holds
current machine instruction)

15

Registers

• Operand_1, Operand_2,
Result: ALU registers (for
calculations and comparisons)

16

Registers

• General: fast temporary
storage

17

Cache

• Cache: an area of comparatively fast temporary storage for information
copied from slower storage.
• Examples:

• Program instructions are moved from secondary storage to main memory, so they can be
accessed more quickly

• Data is moved from main memory to a CPU register, so it can be accessed instantaneously

• Caching takes places at several levels in a computer system
• More later on Caching

18

Cache

19

CPU / Registers / Memory

CPU

Registers, 1clk

eax

ebx

ecx

edx

esi

edi

esp

ebp

eip

cs

ds

es

fs

gs

ss

eax General-purpose registers eip Hidden register. You cannot access it cs Segment registers, stores CPL/RPL

M
M
U

Cache
L1 (3clk)
L2 (7clk)

L3 (30clk)

200 ~ 300 clk

Real computers …

• … use the “stored program” concept
• VonNeumann architecture

• Program is stored in memory, and is executed under the control of the operating system

• … operate using an Instruction Execution Cycle

21

Instruction Execution Cycle

1. Fetch next instruction (at address in IP) into IR

2. Increment IP to point to next instruction

3. Decode instruction in IR

4. If instruction requires memory access
A. Determine memory address.

B. Fetch operand from memory into a CPU register, or send operand from a CPU register to memory.

5. Execute micro-program for instruction

6. Go to step 1 (unless the “halt” instruction has been executed)

Note: default execution is sequential

22

Example CISC Instruction

ADD R1, mem1 ;Example assembly language instruction

Meaning: Add value in memory location mem1 to value in register R1

Example ADD Microprogram:

(each micro instruction executes in one clock cycle)

1. Copy contents of R1 to ALU Operand_1

2. Move address mem1 to MAR

3. Signal memory fetch (gets contents of memory address currently in MAR into MDR)

4. Copy contents of MDR into ALU Operand_2

5. Signal ALU addition

6. Set Status Register and Copy contents of ALU Result to register R1

23

Example CISC Instruction

24

Things get complicated …

• Even in the simplest architectures
• Bus Arbitration required

• CPU scheduling required

• As architectures become more complex
• Multi-processor coordination required

• Cache management required

• Etc. …

25

Introduction to Intel IA-32 architecture

26

Preliminaries: Metrics (measurements)

• Speed (distance/time) is measured in electronic units:
• K = 103, M = 106, G = 109, etc.
• e.g. network speed of 8 Mbps means 8,000,000 bits per second

• Size in bits, Bytes is measured in binary units
• Commonly used: K = 210, M = 220, G = 230, etc.
• In this course, use: Ki = 210, Mi = 220, Gi = 230

• e.g., disk size of 200 GiB means
• 200 * 230 Bytes = 214,748,364,800 Bytes = 1,717,986,918,400 bits

• Bytes and bits (abbreviations)
• Use lower-case b for bits
• Use upper-case B for Bytes
• Example: 1Mib = 128 KiB

27

Intel IA-32 Architecture

• CISC

• Two modes of operation:
• Protected
• Real-address

• Two processors in one
• Integer unit
• Floating-point unit
• Two processors can work in parallel (co-pressors)

• Separate instructions sets
• Separate data registers

• Different configuration

• Separate ALUS

28

Intel IA-32 Architecture

• Specific hardware implementations
• Registers

• Memory addressing scheme

• Specific instruction set and microprograms

• Specific assembly languages
• MASM, NASM, TASM, etc.

• Specific operating systems
• Windows, Linus, DOS, etc.

29

Intel IA-32 Architecture

• Memory
• Up to 4 GiB

• Byte-addressable

• Little-endian

• 32-bit machine
• Registers

• Buses

• ALU

30

Intel IA-32 Architecture

• Byte is the smallest unit of data that can be manipulated directly in the IA-32
architecture.

• Operating system and instruction decoder determine how byte codes are interpreted
• Integer

• Character

• Floating-point

• Instruction

• Address

• Status bits

31

Integer Unit Registers

32-bit general-purpose registers

32

EAX EBP

EBX ESP

ECX ESI

EDX EDI

32-bit multi-purpose registers

EFL (status) CS ES

EIP (instruction pointer) SS FS

In protected mode, the Control Register, Instruction Register,
MAR, and MDR are usually hidden

DS GS

16-bit segment registers32-bit special-purpose registers

Integer Unit Registers

• Most of the 32-bit registers are visible during MASM debugging
• The 32-bit “general” and “multi” registers may be manipulated directly

• The 32-bit “special” registers are manipulated by the micro-programs that implement
the instructions

33

Integer Unit Registers

• Some “general-purpose” and “multi-purpose” registers are used for special
purposes:
• EAX and EDX are automatically used by integer multiplication and division

instructions

• ECX is automatically used as a counter for some looping instructions

• ESP is used for referencing the system stack

• Etc.

34

Integer Unit Registers

• Some 32-bit registers have 8-bit and 16-bit “sub-registers”
• EAX, EBX, ECX, EDX

• Example: Sub-registers of EAX
• AX refers to the least-significant 16-bits of EAX

• AL refers to the least-significant 8-bits of AX

• AH refers to the most-significant 8-bits of AX

35

Integer Unit Registers

• Note: if you change a sub-register, the value in the entire register is
changed.

• Example:
• Suppose that EAX contains the electrical representation of 67890

• We now give the instruction mov AL, 27

• The new value in EAX is 67867

36

Integer Unit Registers

• Some 32-bit registers have only 16-bit “sub-registers”
• ESI, EDI, EBP, ESP

• Example: Sub-registers of ESI
• SI refer to the least-significant 16-bits of ESI

37

There’s only one set of registers for the integer unit!

• Something like global variables

• Sometimes have to be saved and restored.

• Most register instructions (for now) reference EAX, EBX, ECX, and/or EDX

38

Introduction to MASM assembly language

39

MASM Instruction Types

• Move data

• Arithmetic

• Compare two values

• Conditional/unconditional branch

• Call procedure, return

• Loop control

• I/O (input/output)

40

MASM Directives

• Tell the assembler how to interpret the code
• Mark beginning of program segments … e.g.

.data

.code

• Mark special labels … e.g.

main proc

varName DWORD

• Etc.

41

MASM Program Template
TITLE Program Template (template.asm)

; Author:

; Course/project ID Date:

; Description:

INCLUDE Irvine32.inc

<insert constant definitions here>

.data

<insert variable definitions here>

.code

main PROC

<insert executable instructions here>

exit ; exit to operating system

main ENDP

<insert additional procedures here>

END main

42

MASM Programming

• TITLE directive
• You can put anything you want

• … but the grader wants to see a meaningful title and the name of the source code file

• ; identification block
• Technically optional (as are all comments)

• … but the grader wants to see information

• INCLUDE directive
• Copies a file of definitions and procedures into the source code

• Use Irvine32.inc for now

43

MASM Programming

• Global constants may be defined

• .data directive
• Marks beginning of data segment
• Variable declarations go here

• .code directive
• Marks end of data segment and beginning of code segment
• main procedure defined here (required)

• Other procedures defined here (optional)
• main must have an exit instruction
• All procedures require PROC and ENDP directives

• END directive
• Tells operating system where to begin execution

44

MASM syntax and style

• MASM is not case-sensitive!!
• Constants usually ALL CAPS

• Segments start with .
• main should be the first procedure in the .code segment

• Beginning of next segment (or END main) is end of segment

• Comments start with ;
• Can start anywhere in a line

• Remainder of line is ignored by the assembler

• End of line is end of comment

• Use indentation and sufficient white space to make sections easy to find and identify

45

MASM identifier syntax

• Identifiers: Names for variables, constants, procedures, and labels

• 1 to 247 characters (no spaces)
• Use concise, meaningful names

• Not case sensitive!

• Start with letter, _, @, or $
• For now, start with letter only

• Remaining characters are letters, digits, or _

• Cannot be a reserved word
• E.g.: proc, main, eax, … etc.

46

Memory Locations

• May be named
• Name can refer to a variable name or a program label

• Interpretation of contents depends on program instructions
• Numeric data

• Integer, floating point

• Non-numeric data
• Character, string

• Instruction

• Address

• etc.

47

MASM data types syntax

48

MASM Data definition syntax

• In the .data segment

• General form is

label data_type initializer

;comment

• label is the “variable name”

• data_type is one of (see previous slides)

• At least one initializer is required
• May be ? (value to be assigned later)

• Examples:

49

Data in Memory

• “variables” are laid out in memory in the order declared

• Example:

• Suppose that the data segment starts at memory address 1000

50

Data in Memory

• Note:

• Each name is a constant
• i.e. the system substitutes the memory address for each occurrence of a name

• The contents of a memory location may be variable.

51

Literals

• Actual values, named constants
• Integer

• Floating point

• Character

• String (only in .data segment or named constant)

• Used for:
• Initializing variables (in the .data segment)

• Defining constants

• Assigning contents of registers

• Assigning contents of memory (in the .code segment)

52

MASM Literals syntax

• Integer
• Optional radix: b, q/o, d, h

• Digits must be consistent with radix (e.g., 1011b, 235q, 2012d, 30h)

• Hex values that start with a letter must have a leading 0 (e.g., 0A3h)
• Or use the 0x prefix instead of the radix (e.g., 0xA3)

• Default is decimal

• Floating-point (decimal real)
• Optional sign

• Standard notation (e.g., -3.5 +5. 7.2345)

• Exponent notation (e.g., -3.5E2 6.15E-3)

• Must have a decimal point

53

MASM Literals syntax

• Character
• Single character in quotes

• ‘a’ “*” ‘3’

• Single quotes recommended

• String
• 2 or more characters in quotes

• “always”, 0

• ‘123 * 456’, 0

• Double quotes recommended
• Embedded quotes must be different

• “It’s”, 0 ‘Title: “MASM”’, 0

• String must be null-terminated
• Always end with zero-byte

54

MASM Instruction syntax

• Each instruction line has 4 fields:
• Label

• Opcode

• Operands

• Comments

• Depending on the opcode, one or more operands may be required
• Otherwise, any field may be empty

• If empty opcode field, operand field must be empty

55

MASM Instruction syntax

• Opcode (specifies what to do)
• Mnemonic (e.g., ADD, MOV, CALL, etc.)

• Zero, one, or two Operands (specify the opcode’s target)
• Different number of operands for different opcodes

56

MASM Addressing modes

Specific “addressing modes” are permitted for the operands associated with each opcode.

• Basic (used in first programming assignment)
• Immediate Constant, literal, absolute address
• Register Contents of register
• Direct Contents of referenced memory address
• Offset Memory address; may be calculated

• Advanced (used in later assignments)
• Register indirect Access memory through address in a register
• Indexed “array” element, using offset in register
• Base-indexed start address in one register; offset in another, add and access

memory
• Stack Memory area specified and maintained as a stack; stack

pointer in ESP register

See the MASM list of instructions

57

Writing a MASM program

• Demo

58

Example Problem Definition

Write a MASM program to perform the following tasks:

1. Introduce yourself to the user.

2. Get the user’s name and age.

3. Greet the user, and report the user’s age in dog years.

4. Say good-bye to the user.

Requirements:

1. The user’s name and age must be entered by the user, and must be stored and
accessed as data segment variables.

2. The “dog-years factor” (7) must be defined as a constant.

59

Program Design

• Decide what the program should do

• Define algorithm(s)

• Decide what the output should show

• Determine what variables/constants are required

60

Implementing a MASM program

• Open project

• Start with template, “save as” <.asm file in the program directory>
• This is the source code file

• Fill in identification block information

• Create comment outline for algorithms

• Define constants
• Test/fix (syntax check, nothing happens)

• Declare variables (.data section)
• Test/fix (syntax check, nothing happens)

• Enter the output code
• Test/fix (no calculations, usually everything show 0)

• Enter the input code
• Test/fix (no calculations, echo input)

• Enter the calculation code
• Test/fix (logic check, verify)

*First try Debug, Start Without Debugging (more later on using the debug system)

61

Writing a MASM program

• Rules & Regulations

• Syntax and semantics

62

MASM Instructions

• For now, know how to use
• mov, add, sub, mul, div, call

• Some instructions use implied operands

• See textbook (Appendix) or on-line instructions

63

Easy Instructions

• For 2-operand instructions, the 1st operand is the destination, and the 2nd operand is the
source

• 2-operand instructions require at least one of the operands to be a register (or op2 must
be literal).
• Note: op1 cannot be a literal

64

Instructions with implied operands

• mul implied operand must be in EAX

• mul op2 ; result is in EDX:EAX

• Example:

mov eax, 10

mov ebx, 12

mul ebx ; result is in eax (120)

; with possible overflow in edx

; edx is changed!

65

Instructions with implied operands

• div implied operand is in EDX:EAX

• So extend EAX into EDX before division

• div op2 ; quotient is in EAX

; remainder is in EDX

• Example:

mov eax, 100

cdq ; extend the sign into edx

mov ebx, 9

div ebx ; quotient is in eax (11)

; remainder is in edx (1)

66

Operand notation (See Instruction list)

67

Examples

68

Examples

69

Invalid MOV statements

70

Libraries

• We will use Irvine’s library (for now) to handle the really awful stuff
• Input/output

• Screen control

• Timing

• etc.

• Check IrvineLibHelp, or find the descriptions in your textbook.

71

Library Procedures – Overview 1

• Clrscr – clear the screen
• Preconditions: none

• Postconditions: screen cleared, and cursor is at upper left corner

• Crlf – New line
• Preconditions: none

• Postconditions: cursor is at beginning of next new line

72

Library Procedures – Overview 2

• ReadInt – Reads an integer from keyboard, terminated by the Enter key
• Preconditions: none

• Postconditions: value entered is in EAX

• ReadString – Reads a string from keyboard, terminated by the Enter key
• Preconditions: OFFSET of memory destination in EDX

Size of memory destination in ECX

• Postconditions: String entered is in memory

Length of string entered is in EAX

73

Library Procedures – Overview 3

• WriteInt, WriteDec – Writes an integer to the screen
• Preconditions: value in EAX

• Postconditions: value displayed

• WriteInt displays +/-

• WriteString – Writes a null-terminated string to the screen
• Preconditions: OFFSET of memory location in EDX

• Postconditions: String displayed

74

Calling a Library Procedure

• The INCLUDE directive copies the procedure prototypes (declarations) into the program
source code.

• Call a library procedure using the CALL instruction.

75

In-line Comments

• Start with ;

• May be on separate line or at the end of a line

• Use comments to clarify lines or sections

• Preferred …

• OK …

• Terrible …

76

