CS 271
Computer Architecture &
Assembly Language

Lecture 2
Intro to IA-32 and MASM
1/6/22, Thursday

Due Reminder

 Week 1 Summary Exercise:
* Due Sunday 1/9 11:59 pm on Canvas

Lecture Topics:

* How computer hardware works?

* Introduction to Intel IA-32 architecture

* Introduction to MASM assembly language
* Writing a MASM program

Preliminaries

* Inside a computer, information is represented electrically
* Smallest unit of information is a switch (may be on or off)

* We often represent “off” as 0 and “on” as 1, so a single switch represents a
binary digit, and is called a “bit”.

* Different combinations of switches represent different information
* A group of 8 bits is called a byte

General registers

ry

Y

F Y

Y

Y

A Simple CISC Computer (not to scalc) |

Status Register <

Y

'y

'y

Y

Y

¥y

Y

ry

Y

F Y

Y

'y

Y

A A

Yy

Arithmetic/Logic
Unit (ALU)

r

I

Y

Operand 1

ry

Operand 2

Result

CPU

L J

-k B = D e B

w =

'y

Control Register

uhemory

P
(uPrograms)

Starting Address Generator (SAG)

Insiruction Decoder

F 3

Y

Instruction Register (IR)

Y

Instruction Pointer (IP)

-

¥

'y

L J

Adder

Control Bus

1I/0 Unit

e Virtual Memory

Interface

* Virtual File System

Interface

e T/O Buffers

e Network interface

Main Memoryv Unit

Operating System
Device Drivers
System Stack
System Heap
User Programs
User Data

etc.

s cfc.

bf

¥
1]

00
L

v

Swvstem
Clock

Addressing Unit

Y

™

A 4

| | 1M

Y

Memory Address Register (MAR)

F

Y

Memeory Data Register (MDR)

Address Bus >

etc.

Data Bus

e -

mo o A

| Paul’son CS 271

Main parts of the CISC diagram
(Complex Instruction Set Computer)

* Peripheral Devices:
External devices:

» Store/retrieve data (non-
volatile storage)

 Convert data between
human-readable and
machine-readable forms

General registers

-

> Status Register

A Simple CISC Computer (not to scale) |

Control Register

Control Bus

—

A A b 3 A A A

r v r A F ¥ ¥ A

Arithmetic/Logic
Unit (ALU)

h

| Operand 1 [*

A

| Operand 2

| Result

CPU

— M e T -

w2

uMemory P
(uPrograms)

I/O Unit

e Virtual Memory

Interface

Interface

e [/O Buffers

e Network interface

Starting Address Generator (SAG)

Main Memory Unit

* efe.

e Virtual File System

N * Operating System
Instruction Decoder e Device Drivers
1 e System Stack
e System Heap
* Instruction Register (IR) e User Programs
e User Data
® ctc.
* Instruction Pointer (IP)
* Adder J 1
System =
Clock |
Addressing Unit
> Address Bus \ |

MMemory Address Register (MAR)

™ Memory Data Register (MDR)

[

Data Bus

=|®
Bt | e
r
jmi i
==} P
h
E e
— r
a
B !
D
e
S|
1
c
etc.| e
s

N

g
| Paul’son 271

Main parts of the CISC diagram
(Complex Instruction Set Computer)

* 1/0O Unit:
Hardware/software
functions:

e Communicate between
CPU/Memory and
peripheral devices

General registers

-

A

A Simple CISC Computer (not to scale) |

> Status Register

A A A

r ¥ ¥

Control Register

Control Bus

—

A

Arithmetic/Logic
Unit (ALU)

h

| Operand 1 [*

A

| Operand 2

| Result

CPU

— M e T -

w2

uMemory P
(uPrograms)

Starting Address Generator (SAG)

Main Memory Uni

I/O Unit
Virtual Memory
Interface
WVirtual File System
Interface
I/O Buffers
Network interface
ete.

N * Operating System
Instruction Decoder e Device Drivers
1 e System Stack
e System Heap

* Instruction Register (IR) e User Programs — |
e User Data b=,

s efc. r

* Instruction Pointer (IP i
ap) NENR

! J .

e

o Adder o=

a

System 1

Clock ~ Ej

D

Addressing Unit e

> EN
i

*Nemory Address Register (MAR) Address Bus | c
I’ efc.| e

r]

™ Memory Data Register (MDR)

Data Bus

| Paul’son

cs 271

Main parts of the CISC diagram
(Complex Instruction Set Computer)

* Main Memory Unit: Cells with
addresses:
e Store programs and data

currently being used by the CPU
(volatile storage)

General registers

-

A

> Status Register

| A sSimple CISC Computer (not to scale) |

A A A

r ¥ ¥

Control Register

3

A

A A b

F v r

Arithmetic/Logic
Unit (ALU)

h

| Operand 1 [*

A

| Operand 2

| Result

CPU

— M e T -

w2

uMemory P
(wPrograms)

—

Control Bus

b

P

SN

Starting Address Generator (SAG)

Instruction Decoder

FY

* Instruction Register (IR)

* Instruction Pointer (IP)

Main Memory Unit

Operating System
Device Drivers
System Stack
System Heap
User Programs
User Data

etc.

I/O Unit
Virtual Memory
Interface
WVirtual File System
Interface
I/O Buffers
Network interface
ctc.

e |

A4

Adder

Addressing Unit

System
Clock

_/pﬁ

‘ii;;:
L 2
i

L]
[]
L]

—_p e om o =

s | cp) I

Y

MMemory Address Register (MAR)

™ Memory Data Register (MDR)

Address Bus

[

4

Data Bus

etc.

w6 A0

| Paul’son

cs 271

Main parts of the CISC diagram

(Complex Instruction Set Computer

* CPU: Central Processing
Unit:
 Execute machine
instructions

General registers

> Status Register

A Simple CISC Computer (not to scale) |

A4

Control Register

Control Bus

Arithmetic/Logic
Unit (ALU)

h

| Operand 1 [*

A

| Operand 2

| Result

CPU

h 4

el - e I - I

w2

uMemory uIP

(uPrograms)

I/O Unit

e Virtual Memory

Interface

e Virtual File System

Interface

e [/O Buffers

e Network interface

—_p e om o =

B te.
Starting Address Generator (SAG) Main Memo ry Unit ° e
N e Operatitffe System
Instruction Decoder o Deaesl Heem
1 e System $tack
e System Meap
* Instruction Register (IR) & User Prgrams L .
e User Dafa =
s efc.
* Instruction Pointer (IP) o
N | ==
* Adder J Ay » E
System y Al
Clock / s
Addressing Unit /

Y

MMemory Address Register (MAR)

Address Bus

™ Memory Data Register (MDR)

[

Data Bus

etc.

w6 A0

| Paul’son C$ 271

Components / Terms

Ill

* Bus: parallel “wires” for
transferring a set of electrical
signals simultaneously

* Internal: Transfers signals among
CPU components

e Control: Carries signals for
memory and |/O operations

* Address: Links to specific
memory locations

e Data: Carries data CPU €=
memory

N\

General registers

A Simple CISC Computer (not to scale) |

Status Register

Control Register

—

Control Bus -2 |

b

.

A A b 3 A A

Arithmetic/Logi
Unit (ALU)

| Operand 1 [*

| Operand 2 [*

| Result

CPU

el - e I - I

w2

uMemory P
(uPrograms)

I/O Unit
e Virtual Memory
Interface
e Virtual File System
Interface
e [/O Buffers
e Network interface

Starting Address Generator (SAG)

Instruction Decoder

* Instruction Register (IR)

* Instruction Pointer (IP)

* ctc.
Main Memory Unit
* Operating System

e Device Drivers

e System Stack

e System Heap

W)

e User Programs L
e User Data '
® ctc.
=

L]
L]

e |

* Adder

System
Clock

Addressing Unit

*Nemory Address Register (MAR)

IR

Memory Data Register (MDR)

—
Address Bus E
r

etc.

Data Bus

oEg e

_—am ey =

w a0

| Paul’son C$ 271

10

Components / Terms

* Register: fast local memory inside
the CPU

* ALU: Arithmetic Logic Unit

* Microprogram: sequence of micro-
instructions (implemented in
hardware) required to execute a
machine instruction

* Micromemory: the actual hardware
circuits that implement the machine
instructions as microprograms

General registers

A Simple CISC Computer (not to scalc) |

-

> Status Register

Control Bus

—

Control Register

r v r A F ¥ ¥ A

)

L]
L]

IR

etc.

) /O Unit
e Virtual Memory
B pMemory pIP Interface
“ (4Programs) e Virtual File System
« I Interface
— e [/O Buifers
n e Network interface
| | [tarting Address Generator (SAG . . + st
e arting Address Generator (¢) Maln MemOl'V Ulllt
Operating System
r . * Operating Sys
< > Instruction Decoder = Deree D
- > n e System Stack
a e System Heap
1 * Instruction Register (IR) e User Programs L
Arithmetic/Logic e User Data
Unit (ALU) B . cte
> “— Instruction Pointer (IP)
u
| Operand 1 [* s ¢
* Adder
| Operand 2 [* System
Clock
| Result > Addressing Unit
*Nemory Address Register (MAR) Address Bus |
+— Memory Data Register (MDR) . Data Bas f - |

CPU

11

oEg e

_—am ey =

w a0

| Paul’son C$ 271

Registers

e Control: dictates current
state of the machine

General registers

Status Register

A Simple CISC Computer (not to scale) |

Control Bus

- > .
N > Control Register i
— /O Unit
e Virtual Memory
B > pMemory ulP Interface
“ > (4Programs) e Virtual File System
< o I Interface
e [/O Buffers
n s Network interface
¢ Starting Address Generator (SAG : . s st
e arting Address Generator () Maln MemOI'Y Ulllt
Operating System
r . * Operating Sys
- > Instruction Decoder o TDegies D
> n 1 e System Stack
a e System Heap
1 * Instruction Register (IR) e User Programs L — |
Arithmetic/Logic e User Data =|.
Unit (ALU) B e ctc r
> “— Instruction Pointer (IP) = |1
u = p
| Operand 1 [* s ¢ = r
* Adder o | T
a
| Operand 2 [* System 1
Clock s
. . D
Result > Addressing Unit e
| — N Eﬂ .
i
*Nemory Address Register (MAR) Address Bus | c
l/ etc.| e
< > - r s
CPU Memory Data Register (MDR) Data Bus | |
| PauPson cs 271

12

Registers

e Status: indicates status of
operation (error, overflow...)

General registers

Status Register

A Simple CISC Computer (not to scale) |

>

Control Bus

- > .
a > v
N > < Control Register i
— /O Unit
e Virtual Memory
B > pMemory ulP Interface
“ > (4Programs) e Virtual File System
« o I Interface
— e [/O Buifers
n s Network interface
| | [tarting Address Generator (SAG . . + st
e arting Address Generator () Maln MemOl'V Ulllt
Operating System
r . * Operating Sys
- - Instruction Decoder o TDegies D
> n 1 e System Stack
a e System Heap
1 * Instruction Register (IR) e User Programs L — |
Arithmetic/Logic e User Data = .
Unit (ALU) B Ste :
> “— Instruction Pointer (IP) = |1
u = p
| Operand 1 [* s ¢ r
* Adder > r
a
| Operand 2 [* System 1
Clock s
. . D
Result > Addressing Unit e
| — N Eﬂ .
i
*Nemory Address Register (MAR) Address Bus | c
l/ etc.| e
< > - r s
CPU Memory Data Register (MDR) Data Bus | |
| PauPson cs 271

13

Registers

A Simple CISC Computer (not to scalc) |

* MAR: Memory Address i o st Regicer |

A

Register (holds address of " e |

A A A
F ¥ ¥
X

—p e T~ n g

woaon A e

* Control Register
H 1I/O Unit
memory location currently — [. it
" > ulP Interfa
rEfe re n C e d) + > (uPrograms) . \T’lililuzrl‘lcle:ile System
« o I Interface
I n e [/O Buifers
. e Network interface
[] . .
IVI D R . IVI e m O ry D ata Reg I Ste r . . z Starting Address Generator (SAG) Main MemOl'V Unit st
holds data being sent to or T | | [mmstructon Decoder e
. B » n 1 e System Stack
a ®» System H
ret rl eve d fro m t h e m e m O ry 1 * Instruction Register (IR) . U};Z::‘og::ﬁw L f—
. Arithmetic/Logic * UserData =
address in the MAR o e
> “—| Instruction Pointer (IP) ;!Eg
u
| Operand 1 [* S X Adjﬁ‘ J R
| Operand 2 [+ Sy
- Clock | /By
Result > Addressing Unit
[Rt &
\"‘L»iemoly Address Register (MAR) > Address Bus |
l/ etc.
CPU N < Memory Data Register (MDR) Data Bus - |

| Paul’son C$ 271

14

Registers

* |P: Instruction Pointer (Holds
memory address of next
instructions)

* |IR: Instruction Register (holds
current machine instruction)

General registers

-

A

> Status Register

A Simple CISC Computer (not to scale) |

A4

Control Bus

e

A A A
r ¥ ¥
X

Control Register

uMemory

(uPrograms) uIP

I/O Unit

e Virtual Memory

Interface

Interface

e Virtual File System

— 1 e [/O Buifers
n s Network interface
| | [tarting Address Generator (SAG . . + st
e arting Address Generator (¢) Maln MemOl'V Ulllt
Operating System
r . . P 2 oy
-+ > ‘ Instruction Decoder = Deree D
- > n 1 e System Stack
a e System Heap
1 @un Register (IR) :D e User Programs L — |
Arithmetic/Logic e User Data =|.
Unit (ALU) B Ste :
> Instruction Pointer (IP) = |1
u = p
| Operand 1 [* s E r
* Adder > r
a
| Operand 2 [* System 1
Clock s
. . D
Result > Addressing Unit e
| — N Eﬂ .
i
*Nemory Address Register (MAR) » Address Bus | c
l/ etc.| e
CPU *+—* Memory Data Register (MDR) Data Bas - | i
| PauPson cs 271

15

Registers

* Operand_1, Operand_2,
Result: ALU registers (for
calculations and comparisons)

General registers

Status Register

A Simple CISC Computer (not to scale) |

A4

Control Register

Control Bus

Arithmetic/Logic
Unit (ALU)

h

A 4

Operand 1

Operand 2

Result

i)

@)

PU

el - e I - I

w2

uMemory

(uPrograms) uIP

I/O Unit

e Virtual Memory

Interface

e Virtual File System

Interface

e [/O Buffers

e Network interface

. tc.
Starting Address Generator (SAG) Main Memo rv Unit ¢ st
Operating Syst
Instruction Decoder : Dlsslicien];gri‘\');:ln
1 e System Stack
e System Heap
* Instruction Register (IR) e User Programs L — |
e User Data =|.
® ctc. r
> Instruction Pointer (IP) QEQ i
- P
] .
e
o Adder S
a
System 1
Clock ~ Ej
D
Addressing Unit e
> & |y
i
*Nemory Address Register (MAR) Address Bus | c
l/ etc.| e
™ Memory Data Register (MDR) Data Bus - | s
| PauPson cs 271

16

Registers

* General: fast temporary
storage

General registe

Status Register

A Simple CISC Computer (not to scale) |

A4

Control Register

Control Bus

Arithmetic/Logic
Unit (ALU)

- R O e D e

| Operand 1 [*

A

w2

| Operand 2

| Result

CPU

uMemory uIP

(uPrograms)

I/O Unit

e Virtual Memory

Interface

e Virtual File System

Interface

e [/O Buffers

e Network interface

Y

. tc.
Starting Address Generator (SAG) Main Memo ry Unit * st
Operating Syst
‘ Instruction Decoder : Dlssfien];gdv);:ln
1 e System Stack
e System Heap
* Instruction Register (IR) e User Programs L —Ts
e User Data = .
® ctc. r
Instruction Pointer (IP) I;!E;l i
- P
] b
e
o Adder S
a
System 1
Clock ~ Ej
D
Addressing Unit e
=
i
Memory Address Register (MAR) Address Bus | c
f etc.| e
™ Memory Data Register (MDR) Data Buas - | i
| PauPson cs 271

17

Cache

e Cache: an area of comparatively fast temporary storage for information
copied from slower storage.

* Examples:

* Program instructions are moved from secondary storage to main memory, so they can be
accessed more quickly

e Data is moved from main memory to a CPU register, so it can be accessed instantaneously

e Caching takes places at several levels in a computer system
* More later on Caching

Cache

(General registers

'y

Y

ry

Y

h 4

A Simple CISC Computer (not to scale) |

Status Register «

h 4

ry

rF

Y

Y

'y

Y

ry

Y

ry

Y

ry

L J

F

Yyv

Arithmetic/Logic
Unit (ALTU)

F

Fy

Y

Operand 1

F 3

Operand 2

Result

CPU

Y

i = e L e — T

v = W

ry

Control Register

uMemory P
(uPrograms)

Starting Address Generator (SAG)

Instruction Decoder

F 3

Y

Instruction Register (IR)

Control Bus

I/0 Unit

» Virtual Memory

Interface

» Virtual File System

Interface

* T/O Buffers

e Network interface

Main Memory Unit

Operating System
Device Drivers
System Stack

System Heap
User Programs

e efc.

J
+—D
W)

L1
1200
0

v

5| | 1N

e User Data
e cfc.
“+— Instruction Pointer (IP)
* Adder —T
System
Clock
Addressing Unit
» Address Bus ‘

'y

Memory Address Register (MAR)

Y

Memory Data Register (MDR)

{

etc.

Data Bus

19

R - |

wow oo =An o

[Paul’son CS 271

CPU / Registers / Memory

General-purpose registers

eip

200 ~ 300 clk

C—

Cache

L1 (3clk)
L2 (7clk)
L3 (30clk)

Hidden register. You cannot access it Segment registers, stores CPL/RPL

Real computers ...

e ... use the “stored program” concept

* VonNeumann architecture
* Program is stored in memory, and is executed under the control of the operating system

e ... operate using an Instruction Execution Cycle

21

Instruction Execution Cycle

1. Fetch next instruction (at address in IP) into IR
2. Increment IP to point to next instruction

3. Decode instructionin IR
4

If instruction requires memory access

A. Determine memory address.
B. Fetch operand from memory into a CPU register, or send operand from a CPU register to memory.

5. Execute micro-program for instruction

6. Go to step 1 (unless the “halt” instruction has been executed)

Note: default execution is sequential

22

Example CISC Instruction

ADD R1l, meml ;Example assembly language instruction
Meaning: Add value in memory location mem1 to value in register R1
Example ADD Microprogram:
(each micro instruction executes in one clock cycle)
Copy contents of R1 to ALU Operand_1
Move address mem1 to MAR
Signal memory fetch (gets contents of memory address currently in MAR into MDR)
Copy contents of MDR into ALU Operand_2
Signal ALU addition
Set Status Register and Copy contents of ALU Result to register R1

ok wbhRE

23

Example CISC Instruction

General registers

-
%+

h 4

F

Y

F 3

A Simple CISC Computer (not to scale) |

Y

F 3

F'y

Y

¥

F 3

F

Y

Y

F 3

Y

F Y

Yy

Arithmetic/Logic
Unit (ALT)

F

Y

F 3

Operand 1

F

Operand 2

Result

CPU

A J

it B = e L i — T

v = W

» Status Register - Control Bus |
rF 3 h
L4
< Control Register -
1/0O Unit
e Virtual Memory
uMemory uIP Interface
(HPrograms) e Virtual File System
Interface
e I/O Buffers
e Network interface
. tc.
Starting Address Generator (SAG) Main Memo Iy Unit v
e Operating System
Instruction Decoder Dl:vi ce Dgrivycis
1 e System Stack
* System Heap
* Instruction Register (IR) » User Programs L — I
e User Data = .
+ efc. r
+— Instruction Pointer (IP) I:!E;! i
- P
v J .
e
[Adder =
a
System 1
Clock e Ej
. “ D
Addressing Unit A
- » Eﬂ v
i
*Memory Address Register (MAR) Address Bus | c
l/ » efc.| e
“+—*| Memory Data Register (MDR) Data Bus ¥ | i
| Paul’'son CS 271

Things get complicated ...

* Even in the simplest architectures
e Bus Arbitration required
e CPU scheduling required

* As architectures become more complex

* Multi-processor coordination required
* Cache management required

e Etc. ...

25

Introduction to Intel 1A-32 architecture

26

Preliminaries: Metrics (measurements)

* Speed (distance/time) is measured in electronic units:
e K=103 M =10° G =10°, etc.
* e.g. network speed of 8 Mbps means 8,000,000 bits per second

 Size in bits, Bytes is measured in binary units
 Commonly used: K =219, M =220, G =239 etc.
* In this course, use: Ki =210, Mi =220 Gj =230
* e.g., disk size of 200 GiB means
e 200 * 230 Bytes = 214,748,364,800 Bytes = 1,717,986,918,400 bits

* Bytes and bits (abbreviations)
* Use lower-case b for bits

e Use upper-case B for Bytes
 Example: 1Mib = 128 KiB

27

Intel IA-32 Architecture

* CISC

 Two modes of operation:
* Protected
 Real-address

* TwWo processors in one
* Integer unit
* Floating-point unit
* Two processors can work in parallel (co-pressors)

* Separate instructions sets

* Separate data registers
» Different configuration

* Separate ALUS

28

Intel IA-32 Architecture

 Specific hardware implementations
* Registers
* Memory addressing scheme

 Specific instruction set and microprograms

e Specific assembly languages
« MASM, NASM, TASM, etc.

 Specific operating systems
 Windows, Linus, DOS, etc.

29

Intel IA-32 Architecture

* Memory
* Upto4 GiB
* Byte-addressable
e Little-endian

e 32-bit machine
* Registers

* Buses
e ALU

30

Intel IA-32 Architecture

* Byte is the smallest unit of data that can be manipulated directly in the I1A-32
architecture.

* Operating system and instruction decoder determine how byte codes are interpreted
* Integer
e Character
* Floating-point
* |nstruction
e Address
 Status bits

31

Integer Unit Registers

32-bit general-purpose registers

32-bit multi-purpose registers

EAX EBP
EBX ESP
ECX ESI
EDX EDI

32-bit special-purpose registers

16-bit segment registers

EFL (status) CS ES

EIP (instruction pointer) SS FS

In protected mode, the Control Register, Instruction Register, DS GS
MAR, and MDR are usually hidden

32

Integer Unit Registers

* Most of the 32-bit registers are visible during MASM debugging
* The 32-bit “general” and “multi” registers may be manipulated directly

* The 32-bit “special” registers are manipulated by the micro-programs that implement
the instructions

33

Integer Unit Registers

* Some “general-purpose” and “multi-purpose” registers are used for special
purposes:

 EAX and EDX are automatically used by integer multiplication and division
instructions

e ECX is automatically used as a counter for some looping instructions
* ESP is used for referencing the system stack
* Etc.

34

Integer Unit Registers

* Some 32-bit registers have 8-bit and 16-bit “sub-registers”
* EAX, EBX, ECX, EDX

* Example: Sub-registers of EAX
» AX refers to the least-significant 16-bits of EAX
* AL refers to the least-significant 8-bits of AX
* AH refers to the most-significant 8-bits of AX

AH AL |8bit
AX 16-bit
EAX 32-bit

35

Integer Unit Registers

* Note: if you change a sub-register, the value in the entire register is

changed.

* Example:

e Suppose that EAX contains the electrical representation of 67890

 We now give the instruction mov AL, 27
* The new value in EAX is 67867
AH AL |8bi
AX 16-bit
EFAX 32-bit

36

Integer Unit Registers

* Some 32-bit registers have only 16-bit “sub-registers”
* ESI, EDI, EBP, ESP

* Example: Sub-registers of ESI
e Sl refer to the least-significant 16-bits of ESI

ESI 32-bit

37

There’s only one set of registers for the integer unit!

* Something like global variables
e Sometimes have to be saved and restored.

» Most register instructions (for now) reference EAX, EBX, ECX, and/or EDX

38

Introduction to MASM assembly language

39

MASM Instruction Types

* Move data

* Arithmetic

 Compare two values

e Conditional/unconditional branch
 Call procedure, return

* Loop control

* |/O (input/output)

40

MASM Directives

* Tell the assembler how to interpret the code
* Mark beginning of program segments ... e.g.

.data

.code

* Mark special labels ... e.g.
main proc
varName DWORD

* Etc.

41

MASM Program Template

TITLE Program Template (template.asm)

; Author:

; Course/project ID Date:
; Description:

INCLUDE Irvine32.inc
<insert constant definitions here>

.data
<insert variable definitions here>

.code
main PROC
<insert executable instructions here>
exit ; exit to operating system

main ENDP
<insert additional procedures here>

END main

42

MASM Programming

e TITLE directive

* You can put anything you want
... but the grader wants to see a meaningful title and the name of the source code file

- identification block
» Technically optional (as are all comments)
e ... but the grader wants to see information

e INCLUDE directive

* Copies a file of definitions and procedures into the source code
e Use Irvine32.inc for now

43

MASM Programming

* Global constants may be defined

* .data directive
* Marks beginning of data segment
* Variable declarations go here

e .code directive
* Marks end of data segment and beginning of code segment

 main procedure defined here (required)
e Other procedures defined here (optional)
* main must have an exit instruction
* All procedures require PROC and ENDP directives

e END directive
* Tells operating system where to begin execution

44

MASM syntax and style

* MASM is not case-sensitive!!
e Constants usually ALL CAPS

e Segments start with .
 main should be the first procedure in the . code segment
* Beginning of next segment (or END main) is end of segment

e Comments start with ;

e Can start anywhere in a line
 Remainder of line is ignored by the assembler
* End of line is end of comment

e Use indentation and sufficient white space to make sections easy to find and identify

45

MASM identifier syntax

|dentifiers: Names for variables, constants, procedures, and labels

1 to 247 characters (no spaces)
e Use concise, meaningful names

e Not case sensitive!

Start with letter, , @, or S
* For now, start with letter only

* Remaining characters are letters, digits, or

Cannot be a reserved word
* E.g.: proc, main, eax, ... etc.

46

Memory Locations

* May be named
* Name can refer to a variable name or a program label

* Interpretation of contents depends on program instructions
* Numeric data
* Integer, floating point

* Non-numeric data
* Character, string

* |Instruction
Address

* etc.

47

MASM data types syntax

BYTE Character, string, 1-byte integer
WORD 2-byte integer, address

DWORD 4-byte unsigned integer, address
FWORD 6-byte integer

QWORD 8-byte integer

TBYTE 10-byte integer

REAL4 4-byte floating-point

REALS 8-byte floating-point

REAL10 10-byte floating-point

48

MASM Data definition syntax

* Inthe .data segment

e General form is

label data type initializer
;comment

 label is the “variable name”

* data type is one of (see previous slides)

 Atleastone initializer isrequired

* May be ? (value to be assigned later)

e Fxamnlecg-

size DWORD 100 relass size
celsius WORD -10 ;current Celsius temp
response BYTE 'Y' ;positive answer

myName BYTE "Wile E. Coyote”,0
gpa REAL4 » ;my GPA

49

Data in Memory

e “variables” are laid out in memory in the order declared

* Example:

.data
size
celsius
response
myName
gpa

DWORD 100 ;class size

WORD -10 ;current Celsius
BYTE 'Y’ ;positive answer
BYTE "Wile E. Coyote”,0

REAL4 ° ;my GPA

* Suppose that the data segment starts at memory address 1000

size
celsius
Response
myName

apa

1s address 1000 (DWORD uses 4 bytes)
1s address 1004 (WORD uses 2 bytes)
1s address 1006 (BYTE uses 1 byte)
1s address 1007 (Each character uses 1 byte)
(Blank spaces and the terminating 0 are characters too!)
1s address 1022

50

Data in Memory

size 1s address 1000 (DWORD uses 4 bytes)
celsius 1s address 1004 (WORD uses 2 bytes)
Response 1s address 1006 (BYTE uses 1 byte)

myName 1s address 1007 (Each character uses 1 byte)
(Blank spaces and the terminating 0 are characters too!)
gpa 1s address 1022
* Note:

* Each name is a constant
* i.e. the system substitutes the memory address for each occurrence of a name

* The contents of a memory location may be variable.

51

Literals

e Actual values, named constants
* Integer
* Floating point
e Character
e String (onlyin .data segment or named constant)

e Used for:

* Initializing variables (in the .data segment)

e Defining constants

e Assigning contents of registers

e Assigning contents of memory (in the . code segment)

MASM Literals syntax

* Integer
* Optional radix: b, g/o, d, h
* Digits must be consistent with radix (e.g., 1011b, 235q, 2012d, 30h)

* Hex values that start with a letter must have a leading 0 (e.g., 0A3h)
* Or use the Ox prefix instead of the radix (e.g., 0xA3)

e Default is decimal

* Floating-point (decimal real)
e Optional sign
e Standard notation (e.g., -3.5 +5. 7.2345)
* Exponent notation (e.g., -3.5E2 6.15E-3)
* Must have a decimal point

53

MASM Literals syntax

e Character

* Single character in quotes
e ‘g’ W\ g 77 \3/

e Single quotes recommended
* String
e 2 or more characters in quotes
* “always”, O
e ‘123 * 456’ , 0
* Double quotes recommended

* Embedded quotes must be different
e “It's”, 0 ‘Title: “MASM”’, 0

e String must be null-terminated
* Always end with zero-byte

54

MASM Instruction syntax

* Each instruction line has 4 fields:
e Label
* Opcode
* Operands
* Comments
* Depending on the opcode, one or more operands may be required

e Otherwise, any field may be empty
* |If empty opcode field, operand field must be empty

55

MASM Instruction syntax

* Opcode (specifies what to do)
 Mnemonic (e.g., ADD, MOV, CALL, etc.)

e Zero, one, or two Operands (specify the opcode’s target)
 Different number of operands for different opcodes

opcode
opcode destination

opcode destination, source

56

MASM Addressing modes

Specific “addressing modes” are permitted for the operands associated with each opcode.

* Basic (used in first programming assignment)

* Immediate Constant, literal, absolute address
* Register Contents of register
* Direct Contents of referenced memory address
e Offset Memory address; may be calculated
* Advanced (used in later assignments)
* Register indirect Access memory through address in a register
* Indexed “array” element, using offset in register
* Base-indexed start address in one register; offset in another, add and access
memory
e Stack Memory area specified and maintained as a stack; stack
pointer in ESP register

See the MASM list of instructions

57

Writing a MASM program

* Demo

58

Example Problem Definition

Write a MASM program to perform the following tasks:

1. Introduce yourself to the user.

2. Get the user’s name and age.

3. Greet the user, and report the user’s age in dog years.

4. Say good-bye to the user.

Requirements:

1. The user’s name and age must be entered by the user, and must be stored and
accessed as data segment variables.

2. The “dog-years factor” (7) must be defined as a constant.

59

Program Design

* Decide what the program should do
e Define algorithm(s)
* Decide what the output should show

* Determine what variables/constants are required

60

Implementing a MASM program

* Open project

» Start with template, “save as” <.asm file in the program directory>
* Thisis the source code file

* Fill in identification block information
* Create comment outline for algorithms

* Define constants
* Test/fix (syntax check, nothing happens)

* Declare variables (.data section)
* Test/fix (syntax check, nothing happens)

* Enter the output code
* Test/fix (no calculations, usually everything show 0)

* Enter the input code
* Test/fix (no calculations, echo input)

Enter the calculation code
* Test/fix (logic check, verify)

*First try Debug, Start Without Debugging (more later on using the debug system)

61

Writing a MASM program

* Rules & Regulations

* Syntax and semantics

62

MASM Instructions

* For now, know how to use
* mov, add, sub, mul, div, call

* Some instructions use implied operands

» See textbook (Appendix) or on-line instructions

63

Easy Instructions

* For 2-operand instructions, the 15t operand is the destination, and the 2" operand is the
source

e 2-operand instructions require at least one of the operands to be a register (or op2 must
be literal).

* Note: opl cannot be a literal

mov opl, op2 :0p2 is copied to opl

add opl, op2 ;op2 is added to opl

sub opl, op2 ;0p2 is subtracted from opl
inc opl radd 1toopl

dec opl : subtract 1 from op1l

64

Instructions with implied operands

* mul implied operand must be in EAX

* mul op2 ; resultis in EDX:EAX
* Example:
mov eax, 10
mov ebx, 12
mul ebx ; result is in eax (120)

; with possible overflow in edx

; edx 1s changed!

65

Instructions with implied operands

e divimplied operand is in EDX:EAX
* So extend EAX into EDX before division

e div op2 ; quotient is in EAX
: remainder is in EDX
* Example:
mov eax, 100
cdqg ; extend the sign into edx
mov ebx, 9
div ebx ; quotient is in eax (11)

; remainder is in edx (1)

66

Operand notation (See Instruction list)

r8 8-bit general-purpose register: AL, AH, BL, BH, CL, CH, DL, DH

rié 16-bit general-purpose or multi-purpose register: AX, BX, CX, DX, SI, DI, BP, SP

r32 32-bit general-purpose or multi-purpose register: EAX, EBX, ECX, EDX, ESI, EDI, EBP, ESP
reg any general-purpose or multi-purpose register

accum AL, AX, or EAX (depending on operand size)
mem 8-bit, 16-bit, or 32-bit memory location (depending on operand size)

segreg 16-bit segment register: SS, CS, DS, ES, FS, GS

r/m8 8-bit register or memory location
r/mi16 16-bit register or memory location
r/m32 32-bit register or memory location
imm8 8-bit literal value
imml6 16-bit literal value
imm32 32-bit literal value
imm 8-bit, 16-bit, or 32-bit literal value (depending on operand size)

67

Examples

Syntax Examples

Notes:

MOV mem,accum mov total,eax

mov reSponse,al daccum means €ax

or some valid part of

MOV accum,mem mov al,char eax
mov eax,slize

iImm means “a literal
or constant”

Syntax Examples

MOV mem,imm mov color,7
mov response,’'y’

Syntax Examples

MOV reg,imm mov ecx,256
mov edx,OFFSET myString

Examples

Syntax Examples Notes:
MOV regreg mov dh,bh mem8 means "BYTE"
mov edx,ecx mem16 means “WORD”

mov ebp,es
L P mem32 means “DWORD”

MOV mem,reg mov count,ecx

mov huml bx sreg means CS, DS, ES,

FS, GS, or SS

MOV reg,mem mov ebx,pointer
mov al,response

Syntax Examples

MOV sreg,regl6 mov ds,ax

MOV sreg,meml6 mov es,posl

MOV regl6,sreg mov ax,ds

MOV meml6,sreg mov stack save,ss

0o

Invalid MOV statements

.data

bval BYTE 100
bVvVal2 BYTE ?
wVal WORD 2
dvVval DWORD 5

. code
mov ds,h 45 immediate move to DS not permitted
mov esi,wvVal size mismatch
mov eip,dvVal EIP cannot be the destination
mov 25,bVal immediate value cannot be destination

mov bVal2,bVal memory-to-memory move not permitted

70

Libraries

* We will use Irvine’s library (for now) to handle the really awful stuff
* Input/output
e Screen control
* Timing
* etc.

* Check IrvineLibHelp, or find the descriptions in your textbook.

71

Library Procedures — Overview 1

e Clrscr — clear the screen
* Preconditions: none
* Postconditions: screen cleared, and cursor is at upper left corner

* Crlf — New line
* Preconditions: none
e Postconditions: cursor is at beginning of next new line

72

Library Procedures — Overview 2

* ReadInt — Reads an integer from keyboard, terminated by the Enter key
* Preconditions: none
* Postconditions: value entered is in EAX

e ReadString — Reads a string from keyboard, terminated by the Enter key
* Preconditions: OFFSET of memory destination in EDX
Size of memory destination in ECX
* Postconditions: String entered is in memory
Length of string entered is in EAX

73

Library Procedures — Overview 3

* Writelnt, WriteDec — Writes an integer to the screen
* Preconditions: value in EAX
e Postconditions: value displayed
* Writelnt displays +/-

e WriteString — Writes a null-terminated string to the screen
* Preconditions: OFFSET of memory location in EDX
e Postconditions: String displayed

74

Calling a Library Procedure

 The INCLUDE directive copies the procedure prototypes (declarations) into the program
source code.

e Call alibrary procedure using the CALL instruction.

75

In-line Comments

Start with ;

May be on separate line or at the end of a line

Use comments to clarify lines or sections

Preferred ...

oK. ...

Terrible ...

Calculate the number of students on-line today.

mov
sub
mov

mov
sub
mov

mov
sub
mov

eax,size
eax,absent
present,eax

eax,size
eax, absent
present, eax

eax,size
eax,absent
present,eax

76

;start with class size
;subtract absentees
;number present

;move size into eax
;subtract absent from eax
;move eax to present

