
CS 271
Computer Architecture &

Assembly Language
Lecture 20

Parallelism

Research & Innovation

Closing Remarks

3/10/22, Thursday

1

Lecture Topics:

• Parallelism

• Research & Innovation

• Closing remarks

2

Parallelism

3

Hardware Parallelism (overview)

• Instruction-level parallelism
• Pipeline

• Cache

• Processor-level parallelism
• Multiprocessor (multiple CPUs, common memory)

• Multicomputer (multiple CPUs, each with own memory)

4

Pipelining

5

Instruction Caching

• Hardware provides area for multiple instructions in the CPU
• Reduces number of memory accesses

• Instructions are available for immediate execution

• Might cause problems with decision, repetition, and procedure structures in
programs

6

Multiprocessor Parallelism (shared memory)

7

Multicomputer Parallelism (distributed
memory)

8

Comparisons

• Multiprocessor
• Difficult to build

• Relatively easy to program

• Multicomputer
• Easy to build (given networking technology)

• Extremely difficult to program

• Hybrid systems
• Cloud computing

9

Interconnection Network

• Communication among processors

• Multiprocessor system
• Communication through circuits/memory

• Multicomputer system
• Communication through networking technologies

• Packets (data, source/destination information, etc.)

• Links, switches, interfaces, etc.

10

Software Parallelism

• Parallelizability of algorithms
• Number of processors

• Trade-offs and efficiency

• Sequential/parallel parts

• Amdahl’s Law
• n = number processors

• f = fraction of code that is sequential

• t = time to process entire algorithm sequentially (one processor)

• Note: total execution time is

11

Software Parallelism

12

Software Parallelism

• Example:

• An algorithm takes 10 seconds to executes on a single 2.4G processor. 40% of the
algorithm is sequential. Assuming zero latency and perfect parallelism in the remaining
code, how long should the algorithm take on a 16 X 2.4G processor parallel machine?

• Therefore the expected time is

• 10 / (16 / 7) = 4.375 seconds

• Another way: (0.4 * 10) + (0.6 * 10) / 16

seq. + parallel

13

Software Parallelism

• Assuming perfect scalability, what are the implication on Amdahl’s law when n →∞?

• speedup → 1/f (assuming f ≠ 0)

• Therefore, if f = 0.4, parallelism can never make the program run more than 2.5 times as
fast

14

More Parallelism

• As a Computer Scientist, you will encounter parallel systems, parallel algorithms, parallel
programming … everywhere.

• It is important to understand the fundamentals of computer hardware in order to make
the best uses of parallelism

15

Research & Innovation

16

Parallel Computing Performance Depends on
Hardware/Software

• Hardware
• CPU speed of individual processors

• I/O speed of individual processors

• Interconnection network

• Scalability

• Software
• Parallelizability of algorithms

• Application programming languages

• Operating systems

• Parallel system libraries

17

Hardware Parallelism

• CPU and I/O speed:
• Same factors as for single-processor machines … plus:

• Interconnection network
• Latency (wait time):

• Distance

• Collision / collision resolution

• Bandwidth (bps)
• Bus limitations

• CPU and I/O limitations

• Scalability
• Adding more processors affects latency and bandwidth

18

Software Parallelism

• Parallel system libraries
• Precompiled functions designed for multiprocessing (e.g., matrix transformations)

• Functions for control of communication (e.g., background printing)

• Application programming languages
• Built-in functions for creating child processes, threads, parallel looping, etc.

• Mostly imperative (e.g., C)

• Operating systems

19

Application of Parallelism

• Multi-user systems
• Networks

• Internet

• Speed up single processes
• Chess example

• Expert systems

• Other AI applications

20

Research in Parallelism

• Parallelism is an extremely hot research area
• Especially in parallel software systems, parallel algorithms, etc.

• Knowledge of parallel architectures is useful.

21

Innovations

• ExtremeTech
• Learn about the “bleeding edge”

• What’s going on with embedding computing?
• Integration / Specialization

22

Be Confident…

Now you are able to…

• Access and interpret binary data stored in memory.

• Illustrate the Instruction Execution Cycle.

• Create and analyze well-modularized assembly language programs utilizing
decision, repetition, and procedure structures.

• Utilize a debugger to identify and correct bugs in assembly language programs.

• Illustrate the system stack as it is used for procedure calls and parameter passing.

• Understand the primary components of a modern computer architecture, and
explain their function.

23

Final Remarks…

• Thank you so much for your commitment to this course

• Future improvements?
• MyOSU→ Student Records →

• ULA position
• Contact me! And apply through: https://jobs.oregonstate.edu/postings/103887

24

https://jobs.oregonstate.edu/postings/103887

Final Remarks…

• Submit all your work by the deadline
• Weekly Summary 10

• Quiz 4

• Final Project

• Grade disputation:
• By 3/20 6pm

25

