
CS 271
Computer Architecture &

Assembly Language

Lecture 3

MASM Syntax and First MASM Program

1/11/22, Tuesday

1

Odds and Ends

• My office hours are confirmed:
• M 11-12, W 12-1 @ KEC 3114, R 3:30-5:30 @ KEC 3057

• From now on, you will have access to lecture recordings from W21 on
Canvas
• I will make a class announcement once I’ve done so

• Assignment 1 clarifications

• Questions?

2

Lecture Topics:

• Introduction to MASM assembly language

• Writing a MASM program

3

Introduction to MASM assembly language

4

MASM Program Template
TITLE Program Template (template.asm)

; Author:

; Course/project ID Date:

; Description:

INCLUDE Irvine32.inc

<insert constant definitions here>

.data

<insert variable definitions here>

.code

main PROC

<insert executable instructions here>

exit ; exit to operating system

main ENDP

<insert additional procedures here>

END main

5

MASM syntax and style

• MASM is not case-sensitive!!
• Constants usually ALL CAPS

• Segments start with .
• main should be the first procedure in the .code segment

• Beginning of next segment (or END main) is end of segment

• Comments start with ;
• Can start anywhere in a line

• Remainder of line is ignored by the assembler

• End of line is end of comment

• Use indentation and sufficient white space to make sections easy to find and identify

6

MASM identifier syntax

• Identifiers: Names for variables, constants, procedures, and labels

• 1 to 247 characters (no spaces)
• Use concise, meaningful names

• Not case sensitive!

• Start with letter, _, @, or $
• For now, start with letter only

• Remaining characters are letters, digits, or _

• Cannot be a reserved word
• E.g.: proc, main, eax, … etc.

7

Memory Locations

• May be named
• Name can refer to a variable name or a program label

• Interpretation of contents depends on program instructions
• Numeric data

• Integer, floating point

• Non-numeric data
• Character, string

• Instruction

• Address

• etc.

8

MASM data types syntax

9

MASM Data definition syntax

• In the .data segment

• General form is

label data_type initializer ;comment

• label is the “variable name”

• data_type is one of (see previous slides)

• At least one initializer is required
• May be ? (value to be assigned later)

• Examples:

10

Data in Memory

• “variables” are laid out in memory in the order declared

• Example:

• Suppose that the data segment starts at memory address 1000

11

Data in Memory

• Note:

• Each name is a constant
• i.e. the system substitutes the memory address for each occurrence of a name

• The contents of a memory location may be variable.

12

Literals

• Actual values, named constants
• Integer

• Floating point

• Character

• String (only in .data segment or named constant)

• Used for:
• Initializing variables (in the .data segment)

• Defining constants

• Assigning contents of registers

• Assigning contents of memory (in the .code segment)

13

MASM Literals syntax

• Integer
• Optional radix: b, q/o, d, h

• Digits must be consistent with radix (e.g., 1011b, 235q, 2012d, 30h)

• Hex values that start with a letter must have a leading 0 (e.g., 0A3h)
• Or use the 0x prefix instead of the radix (e.g., 0xA3)

• Default is decimal

• Floating-point (decimal real)
• Optional sign

• Standard notation (e.g., -3.5 +5. 7.2345)

• Exponent notation (e.g., -3.5E2 6.15E-3)

• Must have a decimal point

14

MASM Literals syntax

• Character
• Single character in quotes

• ‘a’ “*” ‘3’

• Single quotes recommended

• String
• 2 or more characters in quotes

• “always”, 0

• ‘123 * 456’, 0

• Double quotes recommended
• Embedded quotes must be different

• “It’s”, 0 ‘Title: “MASM”’, 0

• String must be null-terminated
• Always end with zero-byte

15

MASM Instruction syntax

• Each instruction line has 4 fields:
• Label

• Opcode

• Operands

• Comments

• Depending on the opcode, one or more operands may be required
• Otherwise, any field may be empty

• If empty opcode field, operand field must be empty

16

MASM Instruction syntax

• Opcode (specifies what to do)
• Mnemonic (e.g., ADD, MOV, CALL, etc.)

• Zero, one, or two Operands (specify the opcode’s target)
• Different number of operands for different opcodes

17

MASM Addressing modes

Specific “addressing modes” are permitted for the operands associated with each opcode.

• Basic (used in first programming assignment)
• Immediate Constant, literal, absolute address

• Register Contents of register

• Direct Contents of referenced memory address

• Offset Memory address; may be calculated

• Advanced (used in later assignments)
• Register indirect Access memory through address in a register

• Indexed “array” element, using offset in register

• Base-indexed start address in one register; offset in another, add and access
memory

• Stack Memory area specified and maintained as a stack; stack pointer
in ESP register

See the MASM list of instructions

18

Writing a MASM program

• Rules & Regulations

• Syntax and semantics

19

MASM Instructions

• For now, know how to use
• mov, add, sub, mul, div, call

• Some instructions use implied operands

• See textbook (Appendix) or on-line instructions

20

Easy Instructions

• For 2-operand instructions, the 1st operand is the destination, and the 2nd operand is the
source

• 2-operand instructions require at least one of the operands to be a register (or op2 must
be literal).
• Note: op1 cannot be a literal

21

Instructions with implied operands

• mul implied operand must be in EAX

• mul op2 ; result is in EDX:EAX

• Example:

mov eax, 10

mov ebx, 12

mul ebx ; result is in eax (120)

; with possible overflow in edx

; edx is changed!

22

Instructions with implied operands

• div implied operand is in EDX:EAX

• So extend EAX into EDX before division

• div op2 ; quotient is in EAX

; remainder is in EDX

• Example:

mov eax, 100

cdq ; extend the sign into edx

mov ebx, 9

div ebx ; quotient is in eax (11)

; remainder is in edx (1)

23

Operand notation (See Instruction list)

24

Examples

25

Examples

26

Invalid MOV statements

27

Libraries

• We will use Irvine’s library (for now) to handle the really awful stuff
• Input/output

• Screen control

• Timing

• etc.

• Check IrvineLibHelp, or find the descriptions in your textbook.

28

Library Procedures – Overview 1

• Clrscr – clear the screen
• Preconditions: none

• Postconditions: screen cleared, and cursor is at upper left corner

• Crlf – New line
• Preconditions: none

• Postconditions: cursor is at beginning of next new line

29

Library Procedures – Overview 2

• ReadInt – Reads an integer from keyboard, terminated by the Enter key
• Preconditions: none

• Postconditions: value entered is in EAX

• ReadString – Reads a string from keyboard, terminated by the Enter key
• Preconditions: OFFSET of memory destination in EDX

Size of memory destination in ECX

• Postconditions: String entered is in memory

Length of string entered is in EAX

30

Library Procedures – Overview 3

• WriteInt, WriteDec – Writes an integer to the screen
• Preconditions: value in EAX

• Postconditions: value displayed

• WriteInt displays +/-

• WriteString – Writes a null-terminated string to the screen
• Preconditions: OFFSET of memory location in EDX

• Postconditions: String displayed

31

Calling a Library Procedure

• The INCLUDE directive copies the procedure prototypes (declarations) into the program
source code.

• Call a library procedure using the CALL instruction.

32

In-line Comments

• Start with ;

• May be on separate line or at the end of a line

• Use comments to clarify lines or sections

• Preferred …

• OK …

• Terrible …

33

Example Problem Definition

Write a MASM program to perform the following tasks:

1. Introduce yourself to the user.

2. Get the user’s name and number of yards.

3. Greet the user, and report the yards in inches.

4. Say good-bye to the user.

Requirements:

1. The user’s name and yards must be entered by the user, and must be stored and
accessed as data segment variables.

2. The “yard-to-inch factor” (36) must be defined as a constant.

34

Program Design

• Decide what the program should do

• Define algorithm(s)

• Decide what the output should show

• Determine what variables/constants are required

35

Implementing a MASM program

• Open project

• Start with template, “save as” <.asm file in the program directory>
• This is the source code file

• Fill in identification block information

• Create comment outline for algorithms

• Define constants
• Test/fix (syntax check, nothing happens)

• Declare variables (.data section)
• Test/fix (syntax check, nothing happens)

• Enter the output code
• Test/fix (no calculations, usually everything show 0)

• Enter the input code
• Test/fix (no calculations, echo input)

• Enter the calculation code
• Test/fix (logic check, verify)

*First try Debug, Start Without Debugging (more later on using the debug system)

36

Writing a MASM program

• Demo

37

