CS 271
Computer Architecture &
Assembly Language

Lecture 3
MASM Syntax and First MASM Program
1/11/22, Tuesday

Odds and Ends

* My office hours are confirmed:
* M11-12, W 12-1 @ KEC 3114, R 3:30-5:30 @ KEC 3057

* From now on, you will have access to lecture recordings from W21 on
Canvas

* | will make a class announcement once I’'ve done so
e Assignment 1 clarifications

e Questions?

Lecture Topics:

* Introduction to MASM assembly language
* Writing a MASM program

Introduction to MASM assembly language

MASM Program Template

TITLE Program Template (template.asm)

; Author:

; Course/project ID Date:
; Description:

INCLUDE Irvine32.inc
<insert constant definitions here>

.data
<insert variable definitions here>

.code
main PROC

<insert executable instructions here>

exit ; exit to operating system
main ENDP

<insert additional procedures here>

END main

MASM syntax and style

* MASM is not case-sensitive!!
e Constants usually ALL CAPS

e Segments start with .
 main should be the first procedure in the . code segment
* Beginning of next segment (or END main) is end of segment

e Comments start with ;

e Can start anywhere in a line
 Remainder of line is ignored by the assembler
* End of line is end of comment

e Use indentation and sufficient white space to make sections easy to find and identify

MASM identifier syntax

|dentifiers: Names for variables, constants, procedures, and labels

1 to 247 characters (no spaces)
e Use concise, meaningful names

e Not case sensitive!

Start with letter, , @, or S
* For now, start with letter only

* Remaining characters are letters, digits, or

Cannot be a reserved word
* E.g.: proc, main, eax, ... etc.

Memory Locations

* May be?ued/ - C,J/\g’\’_gﬂ/ft
* Namé can refer to a variable name or a program label

* Interpretation of contents depends on program instructions
* Numeric data
* Integer, floating point

* Non-numeric data
* Character, string

* |Instruction
Address

* etc.

MASM data types syntax

BYTE Character, string, 1-byte integer
WORD 2-byte integer, address
T DWORD 4-byte unsigned integer, address
FWORD 6-byte integer
QWORD 8-byte integer
TBYTE 10-byte integer
REAL4 4-byte floating-point
REALS 8-byte floating-point
REAL10 10-byte floating-point

MASM Data definition syntax

* Inthe .data segment

* General form is
label data type initializer ;comment

* label is the “variable name”
* data type is one of (see previous slides)

 Atleastone initializer isrequired
* May be ? (value to be assigned later)

* Examples:
size DWORD 100 rclass size
celsius WORD -10 ;current Celsius temp
response BYTE 'Y' ;positive answer

myName BYTE "Wile E. Coyote”,0
gpa REAL4 ? ;my GPA

10

Data in Memory

e “variables” are laid out in memory in the order declared

* Example:
.data
size DWORD 100 ;class size
celsius WORD -10 ;current Celsius
response BYTE 'Y’ ;positive answer
myName BYTE "Wile E. Coyote”,0 S 73 oo = [\Dj
gpa REAL4 ;my GPA

* Suppose that the data segment starts at memory address 1000

size 1s address 1000 (DWORD uses 4 bytes)
celsius is address 1004 (WORD uses 2 bytes)
Response i1s address 1006 (BYTE uses 1 byte)
myName 1s address 1007 (Each character uses 1 byte)
(Blank spaces and the terminating 0 are characters too!)
gpa 1s address 1022

11

Data in Memory

size 1s address 1000 (DWORD uses 4 bytes)
celsius 1s address 1004 (WORD uses 2 bytes)
Response 1s address 1006 (BYTE uses 1 byte)

myName 1s address 1007 (Each character uses 1 byte)
(Blank spaces and the terminating 0 are characters too!)
gpa 1s address 1022
* Note:

* Each name is a constant
* i.e. the system substitutes the memory address for each occurrence of a name

* The contents of a memory location may be variable.

12

Literals

e Actual values, named constants
* Integer
* Floating point
e Character
e String (onlyin .data segment or named constant)

e Used for:

* Initializing variables (in the .data segment)

e Defining constants

e Assigning contents of registers

e Assigning contents of memory (in the . code segment)

MASM Literals syntax
_l L'Z’_tq/ ﬂtﬁﬁl'ﬂﬁ/f

* Integer ~"M*vy
N .
» Optional radix: b, /o, d, h™ hehae; i)

* Digits must be consistent with radix (e.g., 1011b, 235q, 2012d, 30h)

* Hex values that start with a letter must have a leading 0 (e.g., 0A3h)
* Or use the Ox prefix instead of the radix (e.g., 0xA3)

\/° Default is decimal

* Floating-point (decimal real)
e Optional sign
e Standard notation (e.g., -3.5 +5. 7.2345)
* Exponent notation (e.g., -3.5E2 6.15E-3)
* Must have a decimal point

14

MASM Literals syntax

* Character
* Single character in quotes

e ‘g’ q-7 *nﬁl V37 SI
e Single quotes recommended
* String

e 2 or more characters in quotes

* “always”, O

e Y123 * 456’ , O

* Double quotes recommended

* Embedded quotes must be different

e “It's”, 0 ‘Title: “MASM”’, 0

 String must be null-terminated

* Always end with zero-byte

15

MASM Instruction syntax

* Each instruction line has 4 fields:
e Label
* Opcode
* Operands
* Comments
* Depending on the opcode, one or more operands may be required

e Otherwise, any field may be empty
* |If empty opcode field, operand field must be empty

16

MASM Instruction syntax

/_'DPE'/-@’LL/I O\ Ot ID
* Opcode (specifies what to g'o) TE = ?j
 Mnemonic (e.g., ADD, MOV, CALL, etc.) i ‘ﬁl
e Zero, one, or two Operands (specify the opcode’s target)
 Different number of operands for different opcodes
opcode .| nt Y. —_3 0/‘

opcode destination

opcode destination, source ADD &y @b)g

17

MASM Addressing modes

Specific “addressing modes” are permitted for the operands associated with each opcode.

* Basic (used in first programming assignment)

* Immediate Constant, literal, absolute address = clena oL bt p{%‘t .
* Register Contents of register
* Direct Contents of referenced memory address
g\ e Offset Memory address; may be calculated
* Advanced (used in later assignments)
* Register indirect Access memory through address in a register
* Indexed “array” element, using offset in register
* Base-indexed start address in one register; offset in another, add and access
memory
e Stack Memory area specified and maintained as a stack; stack pointer

in ESP register
See the MASM list of instructions

18

Writing a MASM program

* Rules & Regulations

* Syntax and semantics

19

MASM Instructions

 For now, know how to use
* mov, add, sub, mul, div, call

* Some instructions use implied operands
* See textbook (Appendix) or on-line instructions

20

Easy Instructions

* For 2-operand instructions, the 15t operand is the destination, and the 2" operand is the
source

e 2-operand instructions require at least one of the operands to be a register (or op2 must
be literal).

* Note: opl cannot be a literal

mov opl, op2 :0p2 is copied to opl

add opl, op2 ;op2 is added to opl

sub opl, op2 ;0p2 is subtracted from opl
inc opl radd 1toopl

dec opl : subtract 1 from op1l

21

Instructions with implied operands

 mul implied operand must be in EAX al. ehx_
* mul op2 ; result is in EDX:EAX @ m
e Example:) Lo

mov eax, 10

mov ebx, 12

mul ebx ; result is in eax (120)

; with possible overflow in edx

; edx 1s changed!

22

Instructions with implied operands

e divimplied operand is in EDX:EAX kay \&)M | e[:)y
* So extend EAX into EDX before division \ / / \E~| }_‘77
 div op2 ; quotient is in EAX @uo o F T
& : remainder is in EDX
* Example:
mov eax, 100
cdqg ; extend the sign into edx
mov ebx, 9
div ebx ; quotient is in eax (11)

; remainder is in edx (1)

23

Operand notation (See Instruction list)

i

r8
rié
r32
reg
accum
mem
segreg
r/m8
r/mié6
r/m32
imm8
immlé
imm32

imm

8-bit general-purpose register: AL, AH, BL, BH, CL, CH, DL, DH

16-bit general-purpose or multi-purpose register: AX, BX, CX, DX, SI, DI, BP, SP
32-bit general-purpose or multi-purpose register: EAX, EBX, ECX, EDX, ESI, EDI, EBP, ESP
any general-purpose or multi-purpose register

AL, AX, or EAX (depending on operand size)

8-bit, 16-bit, or 32-bit memory location (depending on operand size)

16-bit segment register: SS, CS, DS, ES, FS, GS

8-bit register or memory location

16-bit register or memory location

32-bit register or memory location

8-bit literal value

16-bit literal value

32-bit literal value

8-bit, 16-bit, or 32-bit literal value (depending on operand size)

24

Examples

Syntax Examples

Notes:

MOV mem,accum mov total,eax

mov reSponse,al daccum means €ax

or some valid part of

MOV accum,mem mov al,char eax
mov eax,slize

iImm means “a literal
or constant”

Syntax Examples

MOV mem,imm mov color,7
mov response,’'y’

Syntax Examples

MOV reg,imm mov ecx,256
mov edx,OFFSET myString

Examples

Syntax Examples Notes:
MOV regreg mov dh,bh mem8 means "BYTE"
mov edx,ecx mem16 means “WORD”

mov ebp,es
L P mem32 means “DWORD”

MOV mem,reg mov count,ecx

mov huml bx sreg means CS, DS, ES,

FS, GS, or SS

MOV reg,mem mov ebx,pointer
mov al,response

Syntax Examples

MOV sreg,regl6 mov ds,ax

MOV sreg,meml6 mov es,posl

MOV regl6,sreg mov ax,ds

MOV meml6,sreg mov stack save,ss

490

Invalid MOV statements

.data

bval BYTE 100
bVvVal2 BYTE ?
wVal WORD 2
dvVval DWORD 5

. code
mov ds,h 45 immediate move to DS not permitted
mov esi,wvVal size mismatch
mov eip,dvVal EIP cannot be the destination
mov g,i,bVal immediate value cannot be destination 5 =hbve l

mov bVal2,bVal memory-to-memory move not permitted

27

Libraries

 We will use Irvine’s library (for now) to handle the really awful stuff
* Input/output
e Screen control
* Timing
* etc.

* Check IrvineLibHelp, or find the descriptions in your textbook.

28

Library Procedures — Overview 1

e Clrscr — clear the screen
* Preconditions: none
* Postconditions: screen cleared, and cursor is at upper left corner

* Crlf — New line
* Preconditions: none
e Postconditions: cursor is at beginning of next new line

5 /o

29

Library Procedures — Overview 2

* ReadInt — Reads an integer from keyboard, terminated by the Enter key
* Preconditions: none

e Postconditions: value entered @

e ReadString — Reads a string from keyboard, terminated by the Enter key
* Preconditions: OFFSET of memory destination in EDX
Size of memory destination in ECX

e Postconditions: String entered is in memory
Length of string entered is in EAX

30

Library Procedures — Overview 3

* Writelnt, WriteDec — Writes an integer to the screen
* Preconditions: value in EAX
e Postconditions: value displayed
* Writelnt displays +/-

e WriteString — Writes a null-terminated string to the screen
* Preconditions: OFFSET of memory location in EDX
e Postconditions: String displayed

31

Calling a Library Procedure

 The INCLUDE directive copies the procedure prototypes (declarations) into the program
source code.

e Call alibrary procedure using the CALL instruction.

32

In-line Comments

Start with ;

May be on separate line or at the end of a line

Use comments to clarify lines or sections

Preferred ...

oK. ...

Terrible ...

Calculate the number of students on-line today.

mov
sub
mov

mov
sub
mov

mov
sub
mov

eax,size
eax,absent
present,eax

eax,size
eax, absent
present, eax

eax,size
eax,absent
present,eax

33

;start with class size
;subtract absentees
;number present

;move size into eax
;subtract absent from eax
;move eax to present

Example Problem Definition

Write a MASM program to perform the following tasks:
1. Introduce yourself to the user.

2. Get the user’s name and number of yards.

3. Greet the user, and report the yards in inches.

4. Say good-bye to the user.

Requirements:

1. The user’s name and yards must be entered by the user, and must be stored and
accessed as data segment variables.

2. The “yard-to-inch factor” (36) must be defined as a constant.

34

Program Design

* Decide what the program should do
e Define algorithm(s)
* Decide what the output should show

* Determine what variables/constants are required

35

Implementing a MASM program

* Open project

e Start with template, “save as” <.asm file in the program directory>
* This is the source code file

* Fill in identification block information
e Create comment outline for algorithms

e Define constants
» Test/fix (syntax check, nothing happens)

* Declare variables (.data section)
» Test/fix (syntax check, nothing happens)

* Enter the output code
* Test/fix (no calculations, usually everything show 0)

* Enter the input code
* Test/fix (no calculations, echo input)

* Enter the calculation code
* Test/fix (logic check, verify)

*First try Debug, Start Without Debugging (more later on using the debug system)

36

Writing a MASM program

* Demo

37

