CS 271
Computer Architecture &
Assembly Language

Lecture 4
First MASM Program and Conditionals
1/13/22, Thursday

2019
Stay awa

negafive

Due Reminder

* Program #1
* Due Sunday 11:59 pm on Canvas

* Weekly Summary Exercise 2
* Due Sunday 11:59 pm on Canvas

Lecture Topics:

* Finish our first MASM Program
* Introduction to conditions and control structures

Example Problem Definition

Write a MASM program to perform the following tasks:
1. Introduce yourself to the user.

2. Get the user’s name and number of yards.

3. Greet the user, and report the yards in inches.

4. Say good-bye to the user.

Requirements:

1. The user’s name and yards must be entered by the user, and must be stored and
accessed as data segment variables.

2. The “yard-to-inch factor” (36) must be defined as a constant.

Program Design

* Decide what the program should do
e Define algorithm(s)
* Decide what the output should show

* Determine what variables/constants are required

Implementing a MASM program

* Open project

e Start with template, “save as” <.asm file in the program directory>
* This is the source code file

* Fill in identification block information
e Create comment outline for algorithms

e Define constants
» Test/fix (syntax check, nothing happens)

* Declare variables (.data section)
» Test/fix (syntax check, nothing happens)

* Enter the output code
* Test/fix (no calculations, usually everything show 0)

* Enter the input code
* Test/fix (no calculations, echo input)

* Enter the calculation code
* Test/fix (logic check, verify)

*First try Debug, Start Without Debugging (more later on using the debug system)

Writing a MASM program

* Demo

Introduction to conditions and control structures

Branching Execution

* Sometimes it is necessary to interrupt sequential instruction execution

* EIP is changed
e But should not be changed directly

* Examples:
e Skip ahead (e.g., skip the else block)
e Jump backwards (e.g., repeat a section of code)
* Call a procedure

* Conditional / Unconditional branching
* Label required

10

MASM Labels

 Same rules as other identifiers
* May not be any previously defined identifier

e Label definition ends with coIonf:_
e Don’t use colon when referencing the label

* Specifies the memory address of the associated instruction
« ...just like a variable name

* Good practices:
* Put labels on separate lines

* Use meaningful label names
* E.g.,, don’t use a label named label

Unconditional branching

* Instruction format is jmp label

 Meaning is “Set EIP to 1abel and continue execution”

« Remember: label is a name that has been set equivalent to a memory address. I.E., label is a
constant

e 1abel: should be inside the same procedure

* MASM allows jumps to labels in other procedures, but execution will almost certainly get lost in
space

* Examples later

12

Decision structures (alternation)

* We need a way to control branching by checking conditions
e E.g., if a condition is true, do some task. Otherwise, do something else

* MASM provides a way to compare two operands. The result of the
comparison is saved in the status register.

13

Conditional branching

e Used for:

* if structures (decisions, alternation)
* loop structure (repetition, iteration)

* In general, MASM requires you to build your own control structures

* Note: MASM provides some “advanced” conditional directives (.repeat, .if,
.else, ... etc.) which we will NOT use in this course.

* These directives don’t help you to understand how programs work.

14

CMP Instruction

* Compares the destination operand to the source operand
* Non-destructive subtraction: source — destination (destination is not changed)
 Set specific bits in the status register
 Status bits indicate how source compares to destination

* L, > = <=, >, etc.

27 T

e Other information in status register:
* Overflow, zero, error, etc.

* Program can conditionally jump to a label, based on status bits.

* Syntax: CMP destination, source

15

The Status (Flag) Register _ . 5 .4,

Each bit is 0 or 1 to indicate “off” or “on”,

“false” or “true”, etc. v, Overtlow
_ D Direction
L I Interrupt
T Trap
[— o : -—'-'/0 S Slgn
|+ erpo g vthernie z Lero
* Notes: A Auxiliary carry
* This is a partial list p Parity
* We usually do not access these bits directly C Carry

16

Jcond Instruction

* A conditional jump instruction checks the status register and branches (or not) to label
depending on status of specific flags.

 ...usually the next instruction after cmp

* Syntax: Jcond label
* There are many cond forms that can be checked
* |label is defined by the programmer

* Example:
cmp eax, 100
Jjle notGreater ; 1f eax <=100, go to notGreater

Meaning: if the value in EAX is less than or equal to 100, jump to the label notGreater.

17

Common Jcond instructions

* JE jump if destination = source

e JL jump if destination < source

e JG jump if destination > source

e JLE jump if destination <= source

* JGE jump if destination >= source

* JNE jump if destination not = source

* NOTE: These conditions are for signed integers
* OK to compare negative to non-negative, etc.
* More later on this

18

Block-structured IF statements

* You can create assembly language control structures that are equivalent to
statements written in C++/Java/etc...

* Example:
mov eax,opl
cmp eax,op2
1f(opl == op2) jﬁgﬁff\\quf!:
x = 1; f mov X,1
else _——Jmp L2
X = 2;7 @-/58 Ll:
mov X, 2
\ ~~—~
A L2 :

19

Assembly Language Control Structures

* Extend the concept to create your own:
* |f-then

If-then-else

If-then-elseif-else

Compound conditions

While loop

Do-while loop

For loop

Nested structures, switch structures, etc.

20

If-then

e Check condition using CMP

* If condition is false, jump to endThen

* code for TRUE block

 endThen
£ (a==h))
h = 3

L,_>//- -

YRR

mov

Jhe
MoV

21

If-then-else (Method 1)

Check condition using CMP

If condition is false, jump to falseBlock
* Code for TRUE block
* Jump to endFalse

falseBlock:
e Code for FALSE block

endFalse:

22

Convert pseudo-code to MASM

-

|

. £ —
<+ 1f (ipl. op2)
x = 1;
else
4 X = 2;
=
mov eax,opl
cmp eax,op2 ;test condition
Jjne fBlock ;1f opl # op2, jJump to false block
o —IE); x,1 ;true block
Jmp done ;skip over false block
, fBlock:
mov XxX,2 ;false block

. done:

;yend of decision structure

If-then-else (Method 2)

Check condition using CMP

If condition is true, jump to trueBlock

 Code for FALSE block

e Jump to endTrue

trueBlock:

e Code for TRUE block

endTrue:

l'—FLof] —=op =—>
> =5

e ls

MmIVv aX , D-Pl

< &""P QA¥ , 0P =

~truef

Done_

Je truek
Mmov X, L
37P Pope

oV X, I

24

_ H Cop)| ==op2)
If-then-elseif-else o ,-
else+ (ppl == Df’g)
* Check condition1 using CMP e Il
€
* If conditionl is true, jump to trueBlock1l x =3
* Check condition2 using CMP
e . tre
* If condition2 is true, jump to trueBlock® v X,
e Code for FALSE block mov QX of |
e Jump to endBlock CAM\D eAX , oP emaU%'_
* trueBlockl: Je true|

e Code for TRUE blockl

cmpP @px, Of3
e Jump to endBlock

Je trued
trueBlock2: gy

X, =
« Code for TRUE block?2 i~P endB
* endBlock: Brue |
mwW X , |

JP endR

25

' (-:;D: > a @‘—‘203
Compound conditions (AND) 7 ¢! =% F)

% =]
elee
* Check conditionl using CMP oy GO, OP |
* If condition1 is false, jump to falseBlock Cimp €AX . op2
e Check condition2 using CMP jre falre
cmP B4k, OP%
* If condition? is false, jump to falseBlock jwe faire
e Code for TRUE block e,)m;l) ‘;{]
e Jump to endBlock S
* falseBlock: Fake -
* Code for FALSE block C- -
* endBlock:

Dkb"s& ;

Note: this structure implements short-circuit evaluation

26

Compound conditions (OR) floprmwogz 1=l 2= o3)

x = |
else
e Check condition1 using CMP - ———
* If conditionl is true, jump to trueBlock MoV Qe , oPl
o . %P CQX, o P <
* Check condition2 using CMP Je Erue
* If condition?2 is true, jump to trueBlock Twp 'A% ofP3
* Code for FALSE block Je true
e Jump to endBlock SR
e trueBlock: Ump chwme
e Code for TRUE block true
e endBlock: v X
Ao

Note: this structure implements short-circuit evaluation

27

... and so on, and on ...

* Of course there is no end to the variety of decision structures in software
systems

* Things can get complicated. As you construct your decision structures in
MASM, be sure to
e Jump to the correct block based on the result of the comparison
* Jump over the other blocks when you are finished with the selected block

