
CS 271
Computer Architecture & 

Assembly Language

Lecture 4

First MASM Program and Conditionals

1/13/22, Thursday

1



2



Due Reminder

• Program #1
• Due Sunday 11:59 pm on Canvas

• Weekly Summary Exercise 2
• Due Sunday 11:59 pm on Canvas

3



Lecture Topics:

• Finish our first MASM Program

• Introduction to conditions and control structures

4



Example Problem Definition

Write a MASM program to perform the following tasks:

1. Introduce yourself to the user.

2. Get the user’s name and number of yards.

3. Greet the user, and report the yards in inches. 

4. Say good-bye to the user.

Requirements:

1. The user’s name and yards must be entered by the user, and must be stored and 
accessed as data segment variables.

2. The “yard-to-inch factor” (36) must be defined as a constant. 

5



Program Design

• Decide what the program should do

• Define algorithm(s)

• Decide what the output should show

• Determine what variables/constants are required 

6



Implementing a MASM program

• Open project

• Start with template, “save as” <.asm file in the program directory>
• This is the source code file 

• Fill in identification block information 

• Create comment outline for algorithms 

• Define constants 
• Test/fix (syntax check, nothing happens)

• Declare variables (.data section)
• Test/fix (syntax check, nothing happens)

• Enter the output code
• Test/fix (no calculations, usually everything show 0)

• Enter the input code
• Test/fix (no calculations, echo input)

• Enter the calculation code
• Test/fix (logic check, verify)

*First try Debug, Start Without Debugging (more later on using the debug system) 

7



Writing a MASM program

• Demo

8



Introduction to conditions and control structures

9



Branching Execution 

• Sometimes it is necessary to interrupt sequential instruction execution

• EIP is changed 
• But should not be changed directly 

• Examples:
• Skip ahead (e.g., skip the else block)

• Jump backwards (e.g., repeat a section of code)

• Call a procedure 

• Conditional / Unconditional branching

• Label required 

10



MASM Labels

• Same rules as other identifiers

• May not be any previously defined identifier

• Label definition ends with colon :
• Don’t use colon when referencing the label

• Specifies the memory address of the associated instruction
• … just like a variable name

• Good practices:
• Put labels on separate lines

• Use meaningful label names
• E.g., don’t use a label named label

11



Unconditional branching

• Instruction format is jmp label

• Meaning is “Set EIP to label and continue execution”
• Remember: label is a name that has been set equivalent to a memory address. I.E., label is a 

constant

• label: should be inside the same procedure 
• MASM allows jumps to labels in other procedures, but execution will almost certainly get lost in 

space 

• Examples later 

12



Decision structures (alternation)

• We need a way to control branching by checking conditions
• E.g., if a condition is true, do some task. Otherwise, do something else

• MASM provides a way to compare two operands. The result of the 
comparison is saved in the status register. 

13



Conditional branching 

• Used for: 
• if structures (decisions, alternation)

• loop structure (repetition, iteration)

• In general, MASM requires you to build your own control structures 

• Note: MASM provides some “advanced” conditional directives (.repeat, .if, 
.else, … etc.) which we will NOT use in this course. 
• These directives don’t help you to understand how programs work. 

14



CMP Instruction 

• Compares the destination operand to the source operand
• Non-destructive subtraction: source – destination (destination is not changed)

• Set specific bits in the status register

• Status bits indicate how source compares to destination
• <, >, =, <=, >=, etc. 

• Other information in status register:
• Overflow, zero, error, etc. 

• Program can conditionally jump to a label, based on status bits.

• Syntax: CMP destination, source

15



The Status (Flag) Register

Each bit is 0 or 1 to indicate “off” or “on”, 
“false” or “true”, etc.

• Notes:
• This is a partial list

• We usually do not access these bits directly

16



Jcond Instruction

• A conditional jump instruction checks the status register and branches (or not) to label 
depending on status of specific flags.
• … usually the next instruction after cmp

• Syntax: Jcond label

• There are many cond forms that can be checked 

• label is defined by the programmer

• Example: 

cmp eax, 100

jle notGreater ; if eax <=100, go to notGreater

Meaning: if the value in EAX is less than or equal to 100, jump to the label notGreater.

17



Common Jcond instructions

• JE jump if destination = source

• JL jump if destination < source

• JG jump if destination > source

• JLE jump if destination <= source

• JGE jump if destination >= source

• JNE jump if destination not = source

• NOTE: These conditions are for signed integers 
• OK to compare negative to non-negative, etc.
• More later on this

18



Block-structured IF statements

• You can create assembly language control structures that are equivalent to 
statements written in C++/Java/etc…

• Example:

19



Assembly Language Control Structures

• Extend the concept to create your own:
• If-then

• If-then-else

• If-then-elseif-else

• Compound conditions

• While loop

• Do-while loop

• For loop

• Nested structures, switch structures, etc. 

20



If-then

• Check condition using CMP

• If condition is false, jump to endThen
• code for TRUE block

• endThen

21



If-then-else (Method 1)

• Check condition using CMP

• If condition is false, jump to falseBlock
• Code for TRUE block

• Jump to endFalse

• falseBlock:
• Code for FALSE block

• endFalse: 

22



Convert pseudo-code to MASM

23



If-then-else (Method 2)

• Check condition using CMP

• If condition is true, jump to trueBlock
• Code for FALSE block

• Jump to endTrue

• trueBlock:
• Code for TRUE block

• endTrue: 

24



If-then-elseif-else

• Check condition1 using CMP

• If condition1 is true, jump to trueBlock1

• Check condition2 using CMP

• If condition2 is true, jump to trueBlock1
• Code for FALSE block
• Jump to endBlock

• trueBlock1:
• Code for TRUE block1
• Jump to endBlock

• trueBlock2:
• Code for TRUE block2

• endBlock: 

25



Compound conditions (AND)

• Check condition1 using CMP

• If condition1 is false, jump to falseBlock

• Check condition2 using CMP

• If condition2 is false, jump to falseBlock
• Code for TRUE block
• Jump to endBlock

• falseBlock:
• Code for FALSE block

• endBlock:

• Note: this structure implements short-circuit evaluation 

26



Compound conditions (OR)

• Check condition1 using CMP

• If condition1 is true, jump to trueBlock

• Check condition2 using CMP

• If condition2 is true, jump to trueBlock
• Code for FALSE block
• Jump to endBlock

• trueBlock:
• Code for TRUE block

• endBlock:

• Note: this structure implements short-circuit evaluation 

27



… and so on, and on … 

• Of course there is no end to the variety of decision structures in software 
systems

• Things can get complicated. As you construct your decision structures in 
MASM, be sure to
• Jump to the correct block based on the result of the comparison 

• Jump over the other blocks when you are finished with the selected block

28


