CS 271
Computer Architecture &
Assembly Language

Lecture 5
Repetition, Constants, and Data Validation
1/18/22, Tuesday

Odds and Ends

* Due Sunday 1/23 midnight
* Week 3 Summary

* Program #2
* Quiz1

Recap: Conditional Structures

X, Y. Z,¥es, nd
e Ex. Convert the following to MASM assembly (assuming all variables
have been d%Ed)t
I

D) Im DV eax , X

1f ((x < y) and (y < 2)) owp eox, 3y
print yes ige Ffolse

else o V @hx., Y
print no dp =l Z

JE)-F'_ tolse

! A &Jﬂcyﬂ =
—érdﬁ Wwntg St
N Jim D i on @

oV Q&Sﬁj U"‘fgﬂ,t, h D
: y el writeStrg
Shpe |

Recap: Conditional Structures

* Ex. Convert the following MASM assembly to high-level pseudocode (assuming all
variables have been defined):

mov eax, a + (Q<b‘3
cmp ocLceax, b Prvis-Yes
Jl true E\SQ
mov edx, OFFSET no prnt e
call WriteString
jmp done

true: ,_?. =N >—_.\’:JB
mov edx, OFFSET vyes \Jr"?nt ho
call WriteString

oke

done: ’]W'i"i_ﬂts

Lecture Topics:

* Repetition structures
e More about Constants
e Data Validation

Repetition Structures

Repetition Structures (iteration)

* Loops are really if (decision) statements
e Repeat (jump backwards) if a condition is true
e Otherwise, continue

Pre-test loop (while)

* Initialize loop control variable(s)
* top:

e Check condition using CMP tes f

* If condition is false, jump to endWhil
e Code for LOOP BODY (including loop control update)
Jump to top (unconditional jump)

 endWhile:
<

Example pre-test loop: X~9¢

Double x while x <= 1000 vhile Cx<=lovo)

R S N

; 1nitialize accumulator

mov géx, X
; Double x while x <= 1000
cmp eax, 1000

-jg endLoop <= — Coqq_ \JWP

add eax, eax X-- thtnﬂ
Jmp dblLoop «— WMNGNA mp J

*JendLoop:

mov %, eax

* Warning: Note what happens if x <= 0.
* More later about pre-conditions

o~ et leash once
Post-test loop (do-while)

* top:
e Code for LOOP BODY (including loop control update)

* Check condition using CMP <=— e o PP 4 W/le
* If condition is true, jump to top

10

Example post-test loop:
Double x until x > 1000 OLD L

X -|-:><J‘
W —
; 1nitialize accumulator P L“tZ(JX<;—JvO?1>Ji
mov eax, X
dblLoop: ; Double x while x <= 1000

add eax, eax < |o DP las c/(\bl
—Ccmp eax, 1000
lee dblLoop

mov X, eaXx

* Warning: Note what happens if x <= 0.

11

Counted loop (for)

Initializ@o loop count

top:
e Code for LOOP BODY

* loop statement decrements ecx and
e Jump to top if ecx is not equal to O

e Continues to next statementifecx =0

Warning: Note what happens if ecx is changed inside the loop body

Warning: Note what happens if ecx starts at 0, or ecx becomes negative

Exercise great care when constructing nested “loop” loops (nested for loops)
* There is only one ecx register!!

12

Example counted loop (version 1) :
Find sum of integers from 1 to 10

; initialize accumulator, first number, and loop control
S

mov eax, O
mov ebx, 1
A
mov ecx, 10
sumLoop: ; add i1ntegers from 1 to 10
- add eafg_gbx
_\/__h
inc ebx ; add 1 to ebx

loop sumLoop

; subtract 1 from ecx
N - —I—1

; 1f ecx # 0, go to sumLoop
; Print result \:‘V“"t& eoX
call WriteDec ; displays 55

13

Example counted loop (version 2) :
Find sum of integers from 1 to 10

o +t9t+t-—-"" —+
; initialize accumulator, first number, and loop control
mov eax, 0
mov ecx, 10
sumLoop: ; add integers from 10 to 1
add eax, ecx
loop sumLoop ; subtract 1 from ecx

; 1f ecx # 0, go to sumLoop
; Print result
call WriteDec ; displays 55

14

Various Solutions

* Any control structure may be implemented in a variety of ways.

e Learn the MASM instructions!

* Make up a problem
* Write code to solve it

* Experiment! Experiment!! Experiment!!!

15

Demo

- o S54L+ T+ o

* Problem Statement: gets two integers from the user, and calculates the
summation of the integers from the first to the second.

* For example, if the user enters 1 and 10, the program calculates
1+2+3+4+5+6+7+8+9+10.

* Note: This program does not perform any data validation. If the user gives invalid
input, the output will be meaningless.

Defining Constants

17

Symbolic Constants

* May appear in or before the .data segment
e Usually before

* Two methods:
* Equal-Sign (=) Directive
* EQU Directive

18

Equal-Sign Directive

v
* name = expression

* name is called a symbolic constant

e expression is a 32-bit integer (expression or constant)
* More later on this

e Cannot be redefined in the same program

* Style note:
e Use all CAPS for constant names

COUNT = 500

. o @ \$_Db
mov ecx,@

19

EQU Directive

* Define a symbol as numeric or text expression. (Note <...>)

e Cannot be redefined in the same program

NCNE.
PI EQU <3.1416>
PRESS KEY EQU <"Press any key to continue...",6 0>
.data

prompt BYTE PRESS KEY

20

Calculating the size of a string k

* Current location in data segment is S %

* Subtract address of string ,_w,as__’[/_,_}
* Difference is the number of bytes —
.data
rules 1 BYTE "Enter the lower limit: ",0

SIZE 1 = ($ - rules 1)
;constant length of rules 1 (24)

21

Constants

e Constants are treated like labels (Labels are constants!!)
* Literal value is substituted by assembler

 Q: Why is it a good idea to use constants instead of literals in your program
code?

22

Boolean Constants ?

* MASM does not have a Boolean data type

* OK to use literal integer values:
e O for FALSE, 1 or -1 for TRUE

* Traditionally, any value not equal to O means TRUE

23

Data Validation

24

Data Validation

In most cases, programs require specific types of data within a specific range of values.

Check input to verify that input data satisfies the specifications and preconditions.

It is probably not possible to imagine every kind of input error.

“Robust” programs ...
* Try to verify that user’s input can be handled by the program
* Try to keep the program from crashing on invalid input
* Try to inform the user if there is an input data error
* Try to permit the user to correct input data errors

Data Validation

* Simple range checking

* One form of interactive data validation:
* Repeat user-input until a valid value arrives

* Pseudo-code example:

repeat
valid = true
get value
if value is not in range
valid = false
give error message
until valid

26

