
CS 271
Computer Architecture & 

Assembly Language

Lecture 5

Repetition, Constants, and Data Validation

1/18/22, Tuesday

1



Odds and Ends

• Due Sunday 1/23 midnight 
• Week 3 Summary

• Program #2

• Quiz 1

2



Recap: Conditional Structures

• Ex. Convert the following to MASM assembly (assuming all variables 
have been defined):

if ((x < y) and (y < z))

print yes

else 

print no

3



Recap: Conditional Structures

• Ex. Convert the following MASM assembly to high-level pseudocode (assuming all 
variables have been defined):

mov eax, a
cmp eax, b

jl true

mov edx, OFFSET no

call WriteString

jmp done

true:

mov edx, OFFSET yes

call WriteString

done:

4



Lecture Topics:

• Repetition structures

• More about Constants

• Data Validation

5



Repetition Structures 

6



Repetition Structures (iteration)

• Loops are really if (decision) statements
• Repeat (jump backwards) if a condition is true

• Otherwise, continue

7



Pre-test loop (while)

• Initialize loop control variable(s)

• top:
• Check condition using CMP

• If condition is false, jump to endWhile
• Code for LOOP BODY (including loop control update)

• Jump to top (unconditional jump)

• endWhile:

8



Example pre-test loop:
Double x while x <= 1000

• Warning: Note what happens if x <= 0.

• More later about pre-conditions
9



Post-test loop (do-while)

• top:
• Code for LOOP BODY (including loop control update)

• Check condition using CMP

• If condition is true, jump to top

10



Example post-test loop:
Double x until x > 1000

• Warning: Note what happens if x <= 0.

11



Counted loop (for)

• Initialize ecx to loop count

• top:
• Code for LOOP BODY

• loop statement decrements ecx and
• Jump to top if ecx is not equal to 0

• Continues to next statement if ecx = 0

• Warning: Note what happens if ecx is changed inside the loop body

• Warning: Note what happens if ecx starts at 0, or ecx becomes negative

• Exercise great care when constructing nested “loop” loops (nested for loops)
• There is only one ecx register!!

12



Example counted loop (version 1) :
Find sum of integers from 1 to 10

13



Example counted loop (version 2) :
Find sum of integers from 1 to 10

14



Various Solutions 

• Any control structure may be implemented in a variety of ways. 

• Learn the MASM instructions!
• Make up a problem

• Write code to solve it

• Experiment! Experiment!! Experiment!!!

15



Demo

• Problem Statement: gets two integers from the user, and calculates the 
summation of the integers from the first to the second. 

• For example, if the user enters 1 and 10, the program calculates
1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 + 10. 

• Note: This program does not perform any data validation. If the user gives invalid 
input, the output will be meaningless.

16



Defining Constants

17



Symbolic Constants

• May appear in or before the .data segment
• Usually before

• Two methods:
• Equal-Sign (=) Directive

• EQU Directive 

18



Equal-Sign Directive

• name = expression
• name is called a symbolic constant

• expression is a 32-bit integer (expression or constant)
• More later on this 

• Cannot be redefined in the same program

• Style note:
• Use all CAPS for constant names

19



EQU Directive

• Define a symbol as numeric or text expression. (Note <…>)

• Cannot be redefined in the same program

20



Calculating the size of a string

• Current location in data segment is $

• Subtract address of string
• Difference is the number of bytes

21



Constants

• Constants are treated like labels (Labels are constants!!)
• Literal value is substituted by assembler

• Q: Why is it a good idea to use constants instead of literals in your program 
code?

22



Boolean Constants ?

• MASM does not have a Boolean data type
• OK to use literal integer values:

• 0 for FALSE, 1 or -1 for TRUE

• Traditionally, any value not equal to 0 means TRUE

23



Data Validation

24



Data Validation

• In most cases, programs require specific types of data within a specific range of values.

• Check input to verify that input data satisfies the specifications and preconditions.

• It is probably not possible to imagine every kind of input error. 

• “Robust” programs …
• Try to verify that user’s input can be handled by the program

• Try to keep the program from crashing on invalid input

• Try to inform the user if there is an input data error

• Try to permit the user to correct input data errors 

25



Data Validation

• Simple range checking

• One form of interactive data validation:
• Repeat user-input until a valid value arrives

• Pseudo-code example:

26


