
CS 271
Computer Architecture &

Assembly Language

Lecture 6

Debugging & Internal/External Data Representation

1/20/22, Thursday

1

Due Reminder

• Sunday 1/23 11:59 PM via Canvas
• Program #2 (.asm file)

• Quiz 1

• Summary Exercise 3

2

Recap:

• Convert the following to MASM instructions

for (k = 10; k <= n; k++)

print yes;

3

Recap:

• Convert the following to high level pseudo-code
mov eax, k

again:
cmp eax, n
jge done
mov edx, offset no
call WriteString
inc eax
jmp again

done:

4

Lecture Topics:

• Using a Debugging System

• Data Representation

5

Debugging MASM

• Demo

6

Debugging MASM

• Set breakpoints by clicking in the left margin

• “Debug”, “Start Debugging”
• Execution will pause at the first breakpoint

• “Debug”, “Windows”, “Registers”
• To view register contents

• Register contents are shown in hexadecimal (base 16)

• Use F10 (for now) to execute one instruction
• Watch register contents

• Changes in red

7

Debugging MASM

• Helps to locate logic errors

• Helps to really understand what the MASM statements do

• Hints:
• Don’t use F11 to step into Irvine library calls (for now)

• You might have to switch back and forth between the code screen and the I/O screen

• If you make changes, remember to “Stop Debugging” before you restart the
modified program

• Experiment!! With other debugging windows, etc.

8

Debugging MASM

• Step Over (F10)
• If no breakpoint, starts at the first statement in main

• Execute next instruction

• If instruction is call, executes entire called procedure

• Use this to step over library procedures!

• Step Into (F11)
• If no breakpoint, starts at the first statement in main

• Execute next instruction

• If instruction is call, goes to first instruction in called procedure

• Don’t step into library procedures!

9

Debugging MASM

• Other useful Debug menu items
• Before debug session

• Start Without Debugging

• During debug session
• Continue (F5) runs to next breakpoint

• Restart

• Stop Debugging

• Others

10

Data Representation

11

Internal Representation

• Just like everything else in a computer, the representation of data is implemented
electrically
• Switches set to off or on

• With open/closed gates

• There are two states for each gate

• The binary number system used two digits (0 and 1)

• In order to simplify discussion, we use the standard external representation to transcribe
the computer’s internal representation:
• off is written as digit 0

• on is written as digit 1

12

Internal Representation

• Use the binary number system to represent numeric values electrically

• Switches (gates) are grouped into bytes, words, etc., to represent a numerical value in
the binary system

• Note: the number of gates in a group depends on the computer architecture and the
type of data represented.

• E.g., for most architectures:

• byte = 8 bits, word = 2 bytes (bits), etc.

13

External Representation

• Binary Number System
• Has 2 digits: 0 and 1 (binary digit)

• Has places and place values determined by powers of 2.

• (In theory) can uniquely represent any integer value
• A binary representation is just another way of writing a number that we are accustomed to seeing in

decimal form.

• (In practice, inside the computer) representation is finite
• Representations with too many digits get truncated

14

Binary Representation

• Place values (right-to-left) are 20, 21, 22, 23, 24, etc.

• Bits are numbered (right-to-left) starting at 0

• Place value depends on number of “bits” defined for the type.

• Example:
• A 16-bit integer might be (red is “on”, red = 1)

• … transcribed by a human as 0000000010110010

• To convert to its familiar decimal representation, just add up the place values of the places
that are “on”.

15

Converting Binary to Decimal

• In decimal form:

• 128 + 32 + 16 + 2 = 178

16

Converting Decimal to Binary

• Example: 157

• Method 1: Removing largest powers of 2
• 157 – 128 = 29 1 in 128s place

• 29 – 16 = 13 0 in 64s place, 0 in 32 place, 1 in 16s place

• 13 – 8 = 5 1 in 8s place

• 5 – 4 = 1 1 in 4s place

• 1 – 1 = 0 0 in 2s place, 1 in 1s place

• 1 0 0 1 1 1 0 1

• Method 2: Successive division by 2
• 157 ÷ 2 = 78 R 1

• 78 ÷ 2 = 39 R 0

• 39 ÷ 2 = 19 R 1

• 19 ÷ 2 = 9 R 1

• 9 ÷ 2 = 4 R 1

• 4 ÷ 2 = 2 R 0

• 2 ÷ 2 = 1 R 0

• 1 ÷ 2 = 0 R 1

• 1 0 0 1 1 1 0 1 (Write remainders, bottom to top)

17

Numeric Representation

• We will show (later) exactly how an electrical operation can be performed on two
electrical numeric representations to give an electrical result that is consistent with the
rules of arithmetic.

18

Other (external) representations

• Every integer number has a unique representation in each “base” > 2

• Hexadecimal is commonly used for easily converting binary to a more manageable form.
• Because 16 = 24, so 4 binary digits can be represented as one hex digit.

• The hexadecimal number system has 16 digits:
• 0 1 2 3 4 5 6 7 8 9 A B C D E F

• Place values (right-to-left) are 160, 161, 162, 163, 164, etc.
• 160 = 20, 161 = 24, 162 = 28, 163 = 212, 164 = 216, etc.

19

20

Hexadecimal Conversion

• Example: 6077 (decimal)

• 16-bit binary → hexadecimal:

• Binary 0001 0111 1011 1101

• Hexadecimal 1 7 B D

• Write it as 0x17BD or 17BDh

21

Converting Decimal → Hexadecimal

• Use same methods as decimal → binary
• The only difference is the place values

• Example
• 157 (decimal) = 9D (hex) (0X9D or 9Dh)

• … or convert to binary, then to hex

22

Representing negative integers

• Must specify size!
• Specify n: number of bits (8, 16, 32, etc.)

• There are 2n possible “codes”

• Separate the “codes” so that half of them represent negative numbers.
• Note that exactly half of codes have 1 the “leftmost” bit.

23

Binary form of negative numbers

• Several methods, each with disadvantages.

• We will focus on twos-complement form

• For a negative number x:
• Specify number of bits

• Start with binary representation of |x|

• Change every bit to its opposite, then add 1 to the result.

24

Binary form of negative numbers

• Example: -13 in 16-bit twos-complement
• |-13| = 13 = 0000 0000 0000 1101
• Ones-complement is 1111 1111 1111 0010
• Add 1 to get 1111 1111 1111 0011 = -13

• Note that –(–13) should give 13. Try it ☺

• Hex representation?
• Convert binary to hex in the usual way
• -13 = 1111 1111 1111 0011 = FFF3 h = 0xFFF3

• Convert negative binary to decimal?
• Find twos complement, convert, and prepend a minus sign

25

Signed numbers using 4-bit
Twos-complement form

• Notice that all of the negative numbers have 1 in the leftmost bit. All of the
non-negative numbers have 0 in the leftmost bit.
• For this reason, the leftmost bit is called the sign bit

• Note: Nobody uses 4-bit representations (“nibble”).
• Common: 8-bit, 16-bit (extend this diagram yourself ☺)

26

n-bit twos-complement form

• The 2n possible codes give
• Zero (all bits are 0)

• (2n-1 – 1) positive numbers

• 2n-1 negative numbers

• Note: 0 is its own complement

• Note” there is one “weird” number (example: n = 8)
• 0111 1111 + 1 = 1000 0000

• 127 + 1 = -128 (inconsistent with rules of arithmetic)

• 127 is the largest number that can be represented in 8 bits. This means that –(-128) cannot be
represented with 8 bits.

• i.e., the 2’s-complement of 1000 0000 is 1000 0000

27

Signed or Unsigned?

• A 16-bit representation could be used for signed or signed numbers
• 16-bit unsigned range is 0…65535

• 16-bit signed range is -32768…+32767

• Both forms use the same 65536 codes (216 = 65536)

• Example:
• 1010 1010 1010 1010 unsigned is 43690 decimal

• 1010 1010 1010 1010 signed is -21846 decimal

• Example:
• 1111 1111 1111 1111 unsigned is 65535 decimal

• 1111 1111 1111 1111 signed is -1 decimal

• Programs tell the computer which form is being used

28

Negative Hex (signed integers)

29

• How can you tell if a hex representation of a signed integer
is negative?

– Recall that a 16-bit signed integer is negative if the leftmost bit is 1

• 16-bit (4 hex digits) examples:

– 0x7A3E is positive

– 0x8A3E is negative

– 0xFFFF is negative

Exercise

• Convert signed integer 0xACE9 to:

binary:

decimal:

30

• Convert decimal -2345 to:

16-bit binary:

4-digit hex:

Character and Control Codes

• Letters, digits, special characters … are represented internally as numbers

• ASCII 256 codes (1-byte)
• E.g., ‘A’ … ‘Z’ are codes 65-90

• E.g., ‘0’ … ‘9’ are codes 48-57

• Unicode 65,536 codes (2-byte)

• Some codes are used for controlling devices
• E.g., code 10 is “new line” for output device

• E.g., code 27 is Esc (“escape” key)

• Device controllers translate codes (device-dependent)

• All keyboard input is character (including digits)

31

32

Digits

• Digits entered from the keyboard are characters
• E.g., ‘0’ is character number 48, … ‘9’ is character number 57

• What happens if we add ‘3’ + ‘5’?
• The answer is 51 + 53 = 104 → ‘h’

• Numeric data types require conversion by the input/output operations

33

Neutral Representation

• Inside the computer
• Bytes, words, etc., can represent a finite number of combinations of off/on switches.

• Each distinct combination is called a code.

• Each code can be used to represent:
• Numeric value

• Memory address

• Machine instruction

• Keyboard character

• Other character

• Representation is neutral
• The operating system and the programs decide how to interpret the codes.

34

Interpreting Codes

• It is especially important to learn to interpret hexadecimal (external representation)
codes.
• Frequently used by assembly and debugging systems

• If you need help with binary and/or hexadecimal, google online or ask TA or instructor
for help.

35

