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Due Reminder 

• Sunday 1/23 11:59 PM via Canvas
• Program #2 (.asm file)

• Quiz 1

• Summary Exercise 3
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Recap:

• Convert the following to MASM instructions

for (k = 10; k <= n; k++)

print yes;
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Recap:

• Convert the following to high level pseudo-code 
mov eax, k

again:
cmp eax, n
jge done
mov edx, offset no
call WriteString
inc eax
jmp again

done:
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Lecture Topics:

• Using a Debugging System

• Data Representation
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Debugging MASM

• Demo
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Debugging MASM

• Set breakpoints by clicking in the left margin

• “Debug”, “Start Debugging”
• Execution will pause at the first breakpoint

• “Debug”, “Windows”, “Registers”
• To view register contents

• Register contents are shown in hexadecimal (base 16)

• Use F10 (for now) to execute one instruction
• Watch register contents

• Changes in red
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Debugging MASM

• Helps to locate logic errors

• Helps to really understand what the MASM statements do

• Hints:
• Don’t use F11 to step into Irvine library calls (for now)

• You might have to switch back and forth between the code screen and the I/O screen

• If you make changes, remember to “Stop Debugging” before you restart the 
modified program

• Experiment!! With other debugging windows, etc. 
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Debugging MASM

• Step Over (F10)
• If no breakpoint, starts at the first statement in main

• Execute next instruction

• If instruction is call, executes entire called procedure

• Use this to step over library procedures!

• Step Into (F11)
• If no breakpoint, starts at the first statement in main

• Execute next instruction

• If instruction is call, goes to first instruction in called procedure

• Don’t step into library procedures! 
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Debugging MASM

• Other useful Debug menu items
• Before debug session

• Start Without Debugging

• During debug session
• Continue (F5) runs to next breakpoint

• Restart

• Stop Debugging

• Others
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Data Representation
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Internal Representation

• Just like everything else in a computer, the representation of data is implemented 
electrically
• Switches set to off or on

• With open/closed gates

• There are two states for each gate

• The binary number system used two digits (0 and 1)

• In order to simplify discussion, we use the standard external representation to transcribe 
the computer’s internal representation:
• off is written as digit 0

• on is written as digit 1
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Internal Representation

• Use the binary number system to represent numeric values electrically 

• Switches (gates) are grouped into bytes, words, etc., to represent a numerical value in 
the binary system

• Note: the number of gates in a group depends on the computer architecture and the 
type of data represented. 

• E.g., for most architectures:

• byte = 8 bits, word = 2 bytes (bits), etc. 
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External Representation 

• Binary Number System
• Has 2 digits: 0 and 1 (binary digit)

• Has places and place values determined by powers of 2.

• (In theory) can uniquely represent any integer value
• A binary representation is just another way of writing a number that we are accustomed to seeing in 

decimal form. 

• (In practice, inside the computer) representation is finite 
• Representations with too many digits get truncated 

14



Binary Representation 

• Place values (right-to-left) are 20, 21, 22, 23, 24, etc.

• Bits are numbered (right-to-left) starting at 0

• Place value depends on number of “bits” defined for the type.

• Example:
• A 16-bit integer might be (red is “on”, red = 1)

• … transcribed by a human as 0000000010110010

• To convert to its familiar decimal representation, just add up the place values of the places
that are “on”.
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Converting Binary to Decimal 

• In decimal form: 

• 128 + 32 + 16 + 2 = 178 
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Converting Decimal to Binary

• Example: 157

• Method 1: Removing largest powers of 2
• 157 – 128 = 29 1 in 128s place

• 29 – 16 = 13 0 in 64s place, 0 in 32 place, 1 in 16s place

• 13 – 8 = 5 1 in 8s place

• 5 – 4 = 1 1 in 4s place

• 1 – 1 = 0 0 in 2s place, 1 in 1s place

• 1 0 0 1 1 1 0 1 

• Method 2: Successive division by 2
• 157 ÷ 2 = 78 R 1

• 78 ÷ 2 = 39 R 0

• 39 ÷ 2 = 19 R 1

• 19 ÷ 2 = 9 R 1

• 9 ÷ 2 = 4 R 1

• 4 ÷ 2 = 2 R 0

• 2 ÷ 2 = 1 R 0

• 1 ÷ 2 = 0 R 1

• 1 0 0 1 1 1 0 1 (Write remainders, bottom to top)
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Numeric Representation 

• We will show (later) exactly how an electrical operation can be performed on two 
electrical numeric representations to give an electrical result that is consistent with the 
rules of arithmetic. 
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Other (external) representations

• Every integer number has a unique representation in each “base” > 2

• Hexadecimal is commonly used for easily converting binary to a more manageable form. 
• Because 16 = 24, so 4 binary digits can be represented as one hex digit.

• The hexadecimal number system has 16 digits:
• 0 1 2 3 4 5 6 7 8 9 A B C D E F

• Place values (right-to-left) are 160, 161, 162, 163, 164, etc.
• 160 = 20, 161 = 24, 162 = 28, 163 = 212, 164 = 216, etc.
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Hexadecimal Conversion

• Example: 6077 (decimal)

• 16-bit binary → hexadecimal:

• Binary 0001 0111 1011 1101

• Hexadecimal 1 7 B D

• Write it as 0x17BD or 17BDh
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Converting Decimal → Hexadecimal

• Use same methods as decimal → binary
• The only difference is the place values

• Example
• 157 (decimal) = 9D (hex) (0X9D or 9Dh)

• … or convert to binary, then to hex
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Representing negative integers

• Must specify size! 
• Specify n: number of bits (8, 16, 32, etc.)

• There are 2n possible “codes”

• Separate the “codes” so that half of them represent negative numbers.
• Note that exactly half of codes have 1 the “leftmost” bit. 
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Binary form of negative numbers

• Several methods, each with disadvantages.

• We will focus on twos-complement form

• For a negative number x:
• Specify number of bits

• Start with binary representation of |x|

• Change every bit to its opposite, then add 1 to the result.
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Binary form of negative numbers

• Example: -13 in 16-bit twos-complement
• |-13| = 13 = 0000 0000 0000 1101
• Ones-complement is 1111 1111 1111 0010
• Add 1 to get 1111 1111 1111 0011 = -13

• Note that –(–13) should give 13. Try it ☺

• Hex representation?
• Convert binary to hex in the usual way
• -13 = 1111 1111 1111 0011 = FFF3 h = 0xFFF3

• Convert negative binary to decimal?
• Find twos complement, convert, and prepend a minus sign
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Signed numbers using 4-bit
Twos-complement form

• Notice that all of the negative numbers have 1 in the leftmost bit. All of the 
non-negative numbers have 0 in the leftmost bit. 
• For this reason, the leftmost bit is called the sign bit

• Note: Nobody uses 4-bit representations (“nibble”).
• Common: 8-bit, 16-bit (extend this diagram yourself ☺)
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n-bit twos-complement form

• The 2n possible codes give
• Zero (all bits are 0)

• (2n-1 – 1) positive numbers

• 2n-1 negative numbers

• Note: 0 is its own complement

• Note” there is one “weird” number (example: n = 8)
• 0111 1111 + 1 = 1000 0000 

• 127 + 1 =  -128 (inconsistent with rules of arithmetic)

• 127 is the largest number that can be represented in 8 bits. This means that –(-128) cannot be 
represented with 8 bits.

• i.e., the 2’s-complement of 1000 0000 is 1000 0000
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Signed or Unsigned?

• A 16-bit representation could be used for signed or signed numbers
• 16-bit unsigned range is   0…65535

• 16-bit signed range is -32768…+32767

• Both forms use the same 65536 codes (216 = 65536)

• Example:
• 1010 1010 1010 1010 unsigned is 43690 decimal

• 1010 1010 1010 1010 signed is -21846 decimal

• Example:
• 1111 1111 1111 1111 unsigned is 65535 decimal

• 1111 1111 1111 1111 signed is -1 decimal

• Programs tell the computer which form is being used
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Negative Hex (signed integers)
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• How can you tell if a hex representation of a signed integer 
is negative?

– Recall that a 16-bit signed integer is negative if the leftmost bit is 1

• 16-bit (4 hex digits) examples:

– 0x7A3E is positive

– 0x8A3E is negative 

– 0xFFFF is negative



Exercise 

• Convert signed integer 0xACE9 to:

binary: 

decimal: 
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• Convert decimal -2345 to:

16-bit binary: 

4-digit hex:



Character and Control Codes

• Letters, digits, special characters … are represented internally as numbers

• ASCII 256 codes (1-byte)
• E.g., ‘A’ … ‘Z’ are codes 65-90

• E.g., ‘0’ … ‘9’ are codes 48-57

• Unicode 65,536 codes (2-byte)

• Some codes are used for controlling devices
• E.g., code 10 is “new line” for output device

• E.g., code 27 is Esc (“escape” key)

• Device controllers translate codes (device-dependent)

• All keyboard input is character (including digits)
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Digits

• Digits entered from the keyboard are characters
• E.g., ‘0’ is character number 48, … ‘9’ is character number 57

• What happens if we add ‘3’ + ‘5’?
• The answer is 51 + 53 = 104 → ‘h’

• Numeric data types require conversion by the input/output operations
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Neutral Representation

• Inside the computer
• Bytes, words, etc., can represent a finite number of combinations of off/on switches.

• Each distinct combination is called a code.

• Each code can be used to represent:
• Numeric value

• Memory address

• Machine instruction

• Keyboard character

• Other character 

• Representation is neutral 
• The operating system and the programs decide how to interpret the codes. 
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Interpreting Codes

• It is especially important to learn to interpret hexadecimal (external representation) 
codes.
• Frequently used by assembly and debugging systems

• If you need help with binary and/or hexadecimal, google online or ask TA or instructor 
for help.
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