
CS 271
Computer Architecture & 

Assembly Language

Lecture 7

Binary Arithmetic, Byte Ordering 

Float point representation

1/25/22, Tuesday

1



Odds and Ends

• Grading 1 done

• Program 2 past due 

2



Lecture Topics:

• Binary Arithmetic

• Byte Ordering

• Floating-point Representation

3



Binary Arithmetic
Byte Ordering 

4



Arithmetic Operations

• The following examples use 8-bit twos-complement operands
• Everything extends to 16-bit, 32-bit, n-bit representations.

• What is the range of values for 8-bit operands?

• The usual arithmetic operations can be performed directly in binary form with n-bit 
representations. 

5



Binary Addition

• Specify result size (bits)

• Binary addition table: 

• Use the usual rule of add and carry
• With two operands, the carry bit is never greater than 1

• 0+0+1=01, 0+1+1=10, 1+0+1=10, 1+1+1=11

• Example:

• How does overflow occur?

6



Binary Subtraction

• Use the usual rules
• Order of operands

• Borrow and subtract

• Example:

• … or negate and add (-00011110 = 11100010)

• Example: 

7



Verification

• Perform operation on binary operands

• Convert result to decimal

• Convert operands to decimal

• Perform operation on decimal operands

• [convert result to binary]

• Compare results

8



Binary Multiplication

• Usual algorithm

9



Binary Multiplication

• Repeated addition

10



Binary Multiplication

• … or shift left (and add leftovers, if multiplier is not a power of 2)

• Check for overflow

11



Binary Division

• Usual algorithm

12



Binary Division

• Repeated subtraction
• count … until remainder is less than divisor

13



Binary Division

• If divisor is a power of 2, shift right and keep track of dropped bits

• Check for remainder 

14



Arithmetic Operations 

• Note: all of the integer arithmetic operations can be accomplished using only:
• Add

• Complement 

• Addition: √

• Subtraction: complement and add

• Multiplication: repeated add

• Division: repeated subtract

• Comparison: non-destructive subtract

15



Byte-ordering

• When it takes more than one byte to represent a value

• Big-endian
• Bytes are ordered left → right (most significant to least significant) in each word
• Use in Motorola architectures (Mac) and others

• Little-endian
• Bytes are ordered least significant to most significant in each word
• Used in Intel architectures

• For both schemes
• Within each byte, bit values are stored left → right (as usual)
• Each character is one byte
• Strings are stored in byte order

• Problem: communicating between architectures

16



Byte-ordering (big-endian)

• Example 32-bit integer: -1234

11111111 11111111 11111011 00101110

Byte3 Byte2 Byte1 Byte0

• Big-endian (big end first)

• Memory addresses

1004 1005 1006 1007

11111111 11111111 11111011 00101110

FF FF FB 2E

Byte3 Byte2 Byte1 Byte0

17



Byte-ordering (little-endian)

• Example 32-bit integer: -1234

11111111 11111111 11111011 00101110

Byte3 Byte2 Byte1 Byte0

• Little-endian (little end first)

• Memory addresses

1004 1005 1006 1007

00101110 11111011 11111111 11111111

2E FB FF FF

Byte0 Byte1 Byte2 Byte3

18



Communication

• Internet Communication must be consistent across architectures.

• Network order is always big-endian

• More about this in your networking courses (CS/ECE 372)

19



Floating-point Representation

20



Floating-point values

• “decimal” means “base ten”

• “floating-point” means “a number with an integral part and a fraction part”
• Sometimes called “real”, “float”

• Generic term for “decimal point” is “radix point”

21



Converting floating-point (decimal → binary)

• Place values:

• Integral part Fraction part

• Example: 4.5 (decimal) = 100.1 (binary)

22



Converting floating-point (decimal → binary)

• Example: 6.25 = 110.01

• Method: 
• 6 = 110 (Integral part: convert in the usual way)

• .25 x 2 = 0.5 (Fraction part: successive multiplication by 2)

• .5 x 2 = 1.0 (Stop when fraction part is 0)

• 110.01

23



Converting floating-point (decimal → binary)

• Example: 6.2 ≈ 110.001100110011…

• Method: 
• 6 = 110 (Integral part: convert in the usual way)

• .2 x 2 = 0.4

• .4 x 2 = 0.8 (Fraction part: successive multiplication by 2)

• .8 x 2 = 1.6 (Stop when fraction part repeats or size is exceeded)

• .6 x 2 = 1.2

• .2 x 2 = 0.4

• 110.0011 0011 0011 …

24



Floating-point: Internal Representation

• Some architecture handle the integer part and the fraction part separately
• Slow

• Most use a completely different representation (IEEE standard) and a separate ALU 
(Floating-Point Unit)
• Faster operations

• For 32-bit representation:
• Range of values is approximately -3.4 x 1038 … +3.4 x 1038

• Limited precision approximately -1.4 x 10-45… +1.4 x 10-45

25



IEEE 754 Standard

• Single-precision (32-bit)

• Double-precision (64-bit)

• Extended (80-bit)

• 3 parts
• 1 sign bit

• “biased” exponent (single: 8 bits,

double: 11 bits,

extended: 16 bits)

• Normalized mantissa (single: 23 bits, 

double: 52 bits,

extended: 63 bits)

26



32-bit Examples

• 6.25 in IEEE single precision is

• 0 10000001 100100000000000000000000000

• 0100 0000 1100 1000 0000 0000 0000 0000

• =0x40C80000

• 6.2 in IEEE single precision is

• 0 10000001 10001100110011001100110

• 0100 0000 1100 0110 0110 0110 0110 0110

• =0x40C66666

27



32-bit Example: 6.25

• 6.25 in IEEE single precision is

• 6.25 (decimal) = 110.01 (binary)

• Move the radix point until a single 1 appears on the left, and multiply by the 
corresponding power of 2

• =1.1001 x 22

• So the sign bit is 0 (positive)

• The “biased” exponent is 2 + 127 = 129 = 10000001

• And the “normalized” mantissa is 1001 (drop the 1, and zero-fill)

• 0 10000001 100100000000000000000000000

• 0100 0000 1100 1000 0000 0000 0000 0000

• =0x40C80000

28



32-bit Example: 6.2

• 6.2 in IEEE single precision is

• 6.2 (decimal) = 110.001100110011… (binary)

• Move the radix point until a single 1 appears on the left, and multiply by the corresponding 
power of 2

• =1.10001100110011… x 22

• So the sign bit is 0 (positive)

• The “biased” exponent is 2 + 127 = 129 = 10000001

• And the “normalized” mantissa is 10001100110011… (drop the 1)

• 0 10000001 10001100110011001100110

• 0100 0000 1100 0110 0110 0110 0110 0110

• =0x40C66666

• Note that this representation is not exactly equal to 6.2

29



32-bit Example: 0xC1870000

• What decimal floating-point number is represented by 0xC1870000?

• 1100 0001 1000 0111 0000 0000 0000 0000

• 1 10000011 00001110000000000000000

• … so the sign is negative

• … the “unbiased” exponent is 131 – 127 = 4

• … and the “unnormalized” mantissa is 1.00001110000000000000000 (insert the 1 left of 
the radix point)

• Move the radix point 4 places to the right → 10000.111

• -10000.111 = -16.875

30



• We will continue to program the integer unit for now

• Floating-pointing programming … later

31


