CS 271 Computer Architecture & Assembly Language

Lecture 7
Binary Arithmetic, Byte Ordering
Float point representation
1/25/22, Tuesday

Odds and Ends

• Grading 1 done

• Program 2 past due

Lecture Topics:

- Binary Arithmetic
- Byte Ordering
- Floating-point Representation

Binary Arithmetic Byte Ordering

Arithmetic Operations

- The following examples use 8-bit twos-complement operands
 - Everything extends to 16-bit, 32-bit, n-bit representations.
 - What is the <u>range of values</u> for 8-bit operands?
- The usual arithmetic operations can be performed directly in binary form with n-bit representations.

Binary Addition

- Specify result size (bits)
- Binary addition table:
- Use the usual rule of add and carry
 - With two operands, the carry bit is never greater than 1
 - 0+0+1=01, 0+1+1=10, 1+0+1=10, 1+1+1=11
- Example:

• How does <u>overflow</u> occur + + + + + + + + +

Binary Subtraction

- Use the usual rules
 - Order of operands
 - Borrow and subtract
- 국고 15
- **---/**고 8 | 2

• Example:

00101101 00011110 00001111

- 10 /0/10/ and a popul 0000 000 DODIII ון ולמס ס
- ... or negate and add (-00011110 = 11100010)
- Example:

L1100010

Verification

- Perform operation on binary operands
- Convert result to decimal
- Convert operands to decimal
- Perform operation on decimal operands
- [convert result to binary]
- Compare results

Binary Multiplication

• Usual algorithm

Binary Multiplication

Repeated addition

Binary Multiplication

• ... or shift left (and add leftovers, if multiplier is not a power of 2)

Check for overflow

Binary Division

Usual algorithm

Binary Division

- Repeated subtraction
 - count ... until remainder is less than divisor

Binary Division

$$S = 2^{3}$$

$$S = 2^{3}$$

- If divisor is a power of 2, shift right and keep track of dropped bits
- Check for remainder

Arithmetic Operations

- Note: all of the integer arithmetic operations can be accomplished using only:
 - Add
 - Complement
- Addition: √
- Subtraction: complement and add
- Multiplication: repeated add
- Division: repeated subtract
- Comparison: non-destructive subtract

Byte-ordering

- When it takes more than one byte to represent a value
- Big-endian
 - Bytes are ordered left → right (most significant to least significant) in each word
 - Use in Motorola architectures (Mac) and others
- Little-endian
 - Bytes are ordered least significant to most significant in each word
 - Used in Intel architectures
- For both schemes
 - Within each byte, bit values are stored left → right (as usual)
 - Each character is one byte
 - Strings are stored in byte order
- Problem: communicating between architectures

Byte-ordering (big-endian)

• Example 32-bit integer: -1234

11111111 11111111 11111011 00101110

Byte3 Byte2 Byte1 Byte0

- Big-endian (big end first)
- Memory addresses

1004	1005	1006	1007
1111111	1111111	11111011	00101110
FF	FF	FB	2E
Byte3	Byte2	Byte1	Byte0

Byte-ordering (little-endian)

Communication

- Internet Communication must be consistent across architectures.
- Network order is always big-endian

More about this in your networking courses (CS/ECE 372)

Floating-point Representation

Floating-point values

- "decimal" means "base ten"
- "floating-point" means "a number with an integral part and a fraction part"
 - Sometimes called "real", "float"
- Generic term for "decimal point" is "radix point"

Converting floating-point (decimal $\leftarrow \rightarrow$ binary)

• Place values:

2 ⁵	24	2 ³	2 ²	21	20	2-1	2-2	2-3	2-4	2-5
32	16	8	4	2	1	0.5	0.25	0.125	0.0625	0.03125

Integral part

Fraction part

• Example: 4.5 (decimal) = 100.1 (binary)

Converting floating-point (decimal $\leftarrow \rightarrow$ binary)

- Example: 6.25 = 110.01
- Method:
 - 6 = 110 (Integral part: convert in the usual way)
 - .25 x 2 = 0.5 (Fraction part: successive multiplication by 2)
 - $.5 \times 2 = 1.0$ (Stop when fraction part is 0)

• 110.01

Converting floating-point (decimal $\leftarrow \rightarrow$ binary)

- Example: $6.2 \approx 110.00110011...$
- Method:
 - 6 = 110 (Integral part: convert in the usual way)
 - $.2 \times 2 = 0.4$
 - .4 x 2 = 0.8 (Fraction part: successive multiplication by 2)
 - .8 x 2 = 1.6 (Stop when fraction part repeats or size is exceeded)
 - $.6 \times 2 = 1.2$
 - $.2 \times 2 = 0.4$

• 110.0011 0011 0011 ...

Floating-point: Internal Representation

- Some architecture handle the integer part and the fraction part separately
 - Slow

- Most use a completely different representation (IEEE standard) and a separate ALU (Floating-Point Unit)
 - Faster operations
 - For 32-bit representation:
 - Range of values is approximately -3.4 x 10³⁸ ... +3.4 x 10³⁸
 - Limited precision approximately -1.4 x 10⁻⁴⁵... +1.4 x 10⁻⁴⁵

IEEE 754 Standard

```
Single-precision (32-bit)
```

- Double-precision (64-bit)
- Extended (80-bit)
- 3 parts
 - 1 sign bit

•	"biased" exponent (single:	8 bits,
		double:	11 bits,
		extended:	16 bits)

Normalized mantissa (single: 23 bits, double: 52 bits,

extended: 63 bits)

32-bit Examples

- 6.25 in IEEE single precision is
- - 0100 0000 1000 1100 0000 0000 0000 0000
 - \bullet =0x40C80000

- 6.2 in IEEE single precision is
- 0 10000001 1000110011001100110
- 0100 0000
 1100
 0110 0110 0110 0110 0110
- =0x40C66666

32-bit Example: 6.25

- 6.25 in IEEE single precision is
- 6.25 (decimal) = 110.01 (binary)
- Move the radix point until a single 1 appears on the left, and multiply by the corresponding power of 2
- =1.1001 x 2²
- So the sign bit is 0 (positive)
- The "biased" exponent is 2 + 127 = 129 = 10000001
- And the "normalized" mantissa is 1001 (drop the 1, and zero-fill)

- =0x40C80000

32-bit Example: 6.2

- 6.2 in IEEE single precision is
- 6.2 (decimal) = 110.001100110011... (binary)
- Move the radix point until a single 1 appears on the left, and multiply by the corresponding power of 2
- =1.10001100110011... $\times 2^2$
- So the sign bit is 0 (positive)
- The "biased" exponent is 2 + 127 = 129 = 10000001
- And the "normalized" mantissa is 10001100110011... (drop the 1)
- 0 10000001 1000110011001100110
- 0100 0000 1100 0110 0110 0110 0110
- \bullet =0x40C66666
- Note that this representation is not exactly equal to 6.2

32-bit Example: 0xC1870000

- What decimal floating-point number is represented by 0xC1870000?
- 1 10000011 0000111000000000000000
- ... so the sign is negative
- ... the "unbiased" exponent is 131 127 = 4
- ... and the "unnormalized" mantissa is 1.0000111000000000000000 (insert the 1 left of the radix point)
- Move the radix point 4 places to the right → 10000.111
- -10000.111 = -16.875

- We will continue to program the integer unit for now
- Floating-pointing programming ... later

if
$$(a = -b)$$
 x

if $(a - b < 0.00077)$