
CS 271
Computer Architecture & 

Assembly Language
Lecture 9

The System Stack

More MASM Procedures

Intro to Parameter Passing

2/1/22, Tuesday

1



Odds and Ends

• Label names
• Do not name them as L1, L2,… (our textbook give bad examples!) 

• Taking points off starting from programming assignment 4

• Use meaningful names instead

• Indentation
• Align in-line comments as well 

• Midterm: 2/8 (Next Tuesday) during lecture time, same classroom
• Review on Thursday

2



Lecture Topics:

• The System Stack

• More about MASM Procedures

• Documenting Procedures

• Register Management for Procedures

• Introduction to Parameter Passing

3



The System Stack

4



Stack

• Data structure (ADT)

• Last-in, first-out (LIFO or FILO)

• All operations reference the “top” of the stack

• Special names for operations
• push, pop

• Applications:
• Activation stack

• Iterative implementation of recursive algorithms

• Base conversion

• Expression evaluation

• Many others

5



The System Stack (Runtime Stack)

• The operating system maintains a stack
• Implemented in memory

• LIFO structure

• Managed by the CPU, using two registers
• SS: address of stack segment

• ESP: stack pointer (always points to “top” of stack)
• i.e., ESP contains the address of the top of the stack

6



PUSH and POP Instructions (32-bit)

• PUSH syntax
• PUSH r/m32

• PUSH immed

• POP syntax
• POP r/m32

7



PUSH Operation

• A push operation
• Decrements the stack pointer by 4

• Copies a value into the location pointed to by the stack pointer

• Actual decrement depends on the size of the operand
• Note: it’s best to use 32-bit (DWORD, 4-byte) operands

8



Example PUSH

• Suppose that ECX contains 317 and ESP contains 
0200h. In this case, [ESP] is 25. 

• The next instruction is 
• push ecx

• Execute push ecx

• ESP: 01FCh

• [ESP]: 317

• Note: ESP is decremented, then 317 is stored in 
the stack

• Note: [ESP] means “content” of memory at the 
address in ESP

9

Stack Segment in Memory

ESP

ESP



POP Operation

• A pop operation
• Copies value at ESP into a register or variable.

• Increments the stack pointer by 4

• Actual increment depends on the size of the operand
• Note: it’s best to use 32-bit (DWORD, 4-byte) operands

10



Example POP

• Suppose that ESP contains 01FCh. In this 
case, [ESP] is 317

• The next instruction is 
• pop eax

• Execute pop eax

• eax now contains 317

• ESP: 0200h

• [ESP]: 25

• Note: 317 is copied to EAX, then ESP is 
incremented. Memory contents
unchanged.

11

Stack Segment in Memory

ESP

ESP



Using PUSH and POP

• Save and restore registers when they contain important values. POP operands occur in 
the opposite of the order of PUSH operands

12



Example: Nested Loop

• Push the outer loop counter before entering the inner loop.

• Pop the outer loop counter when the inner loop terminates.

13



When not to push

• Be sure that PUSH does not hide a return address

• Be sure that POP dose not lose a return address and/or replace needed values.

14



CALL and RET Instructions

• The CALL instruction calls a procedure
• Pushes the offset of the next instruction onto the stack

• Copies the address of the called procedure into EIP

• The RET instruction returns from a procedure 
• Pops top of stack into EIP

15



Procedure call/return Example (p1)

EAX ?

EBX ?

EDX ?

ESP 0200h

EIP 1202h (address of next instruction)

16



Procedure call/return Example (p2)

EAX 175

EBX 37

EDX 25

ESP 0200h

EIP 1211h (address of call instruction)

17



Procedure call/return Example (p3)

EAX 175

EBX 37

EDX 25

ESP 01FCh

EIP 2C6Bh (address of Sum3 procedure)

18



Procedure call/return Example (p4)

EAX 237

EBX 37

EDX 25

ESP 01FCh

EIP 2C7Ah (address of ret instruction)

19



Procedure call/return Example (p5)

EAX 237

EBX 37

EDX 25

ESP 0200h

EIP 1216h (address of mov instruction)

20



The System Stack

• There is much more to learn about the system stack
• Parameter passing

• Activation records

• Etc.

• Be sure that you understand:
• How the stack works

• Push decrements, Pop increments

• The importance of keeping the stack aligned 

21



More about MASM Procedures
Documenting Procedures
Register Management for Procedures

22



In MASM Procedures … Beware!

• Avoid duplicate labels
• Labels inside a procedure are only visible within that procedure

• Don’t use the same label names in different procedures 

• Preconditions: Be sure to set required registers before calling library procedures.

• Be aware of registers changed in procedures.

23



Local and Global Labels

• Procedures should be invoked by executing a call statement
• Bad style (and a very bad idea) to jump into a procedure from outside the procedure 

• Procedures should terminate by executing a ret statement
• Bad style (and a very bad idea) to jump to a label outside a procedure

• Assembly language permits implementing some very bad ideas and very 
bad styles
• However, good programmers don’t use them

24



Nested Procedure calls

• Any procedure might call another procedure 

• Return addresses are “stacked” (LIFO)

• RET instructions must follow the order on the stack
• This is one very good reason not to jump into or out of a procedure!

• It is essential that the stack be properly aligned when the RET instruction is 
executed!!

25



Documenting Procedures

• Documentation for each procedure:
• Description: A description of the task accomplished by the procedure

• Receives: A list of input parameters; state usage and requirements

• Returns: A description of values returns by the procedure

• Preconditions: List of requirements that must be satisfied before the procedure is called

• Register changed: List of registers that may have different values than they had when the procedure 
was called 

• If a procedure is called without satisfying the preconditions, the procedure’s creator 
makes no promise that it will work.

26



Example Procedure Heading Documentation

27



Saving Registers

• If a procedure changes any registers, the calling procedure might lose 
important data

• Two ways to save data:
• By the calling procedure

• Registers may be saved before call, and restored after return

• By the called procedure
• Registers may be saved at the beginning of the procedure, and restored before the return

28



Saving / Restoring Registers

• Methods:

1. Move register contents to named memory locations, then restore after procedure 
returns.

2. Use pushad and popad
• Option 1: calling procedure pushes before call, pops after return

• Option 2: called procedure pushes at beginning, and pops before the return

3. Save selected registers on the system stack
• Option 1: calling procedure pushes before call, pops after return

• Option 2: called procedure pushes at beginning, and pops before the return

29



Method 1: 
Save Register Contents in Memory

• Example (in main … aReg, bReg declared in .data)

30



Method 2:
Save all Registers on the System Stack

• pushad pushes the 32-bit general-purpose registers onto the stack
• Order: EAX, ECX, EDX, EBX, ESP, EBP, ESI, EDI

• popad pops the same registers off the stack in reverse order
• Note: it’s best to use 32-bit (DWORD) operands

31



Method 2:
Save all Registers on the System Stack

• Example (Option 1: in calling procedure):

32



Method 2:
Save all Registers on the System Stack

• Example (Option 2: in the called procedure):

33



Method 3:
Save Selected Registers on the System Stack

• Example:
• push eax

• pushes the contents of eax onto the system stack

• pop eax

• Pops the top of the system stack into eax

34



Methods 2 and 3: 
Save Registers on the System Stack

• Warnings:
• Be sure that values don’t get lost

• Be sure that the system stack is properly aligned 
• The return address must be on the top of the stack when the ret statement is executed!!

35



• Experiment with MASM

• Try several ways to do some simple tasks

• Use DEBUG to see what happens

36



Introduction to Parameter Passing

37



Parameters

• Definitions:
• Argument (actual parameters) is a value or reference passed to a procedure

• Parameter (formal parameters) is a value or reference received by a procedure

• Return value is a value determined by the procedure, and communicated back to the 
calling procedure. 

• No theoretical limit, but practicality and readability rule. 

38



Parameters Classifications

• An input parameter is data passed by a calling program to a procedure.
• The called procedure is not expected to modify the corresponding argument variable, and even if it does, the 

modification is confined to the procedure itself.

• An output parameter is created by passing the address of an argument variable when a 
procedure is called. 
• The “address of” a variable is the same thing as a “pointer to” or a “reference to” the variable. In MASM, we use 

OFFSET.

• The procedure does not use any existing data from the variable, but it fills in new contents before it returns.

• An input-output parameter is the address of an argument variable which contains input that will 
be both used and modified by the procedure.
• The content is modified at the memory address passed by the calling procedure.

39



Passing Values/Addresses to/from Procedures

• Methods:

1.Use shared memory (global variables)

2.Pass parameters in registers

3.Pass parameters on the system stack

40



1. Use Shared Memory (Global Variables)

• Set up memory contents before call and/or before return

• Generally … it’s a bad idea to use global variables
• Procedure might change memory contents needed by other procedures (unwanted 

side-effect)

• For Program #1 - #4 … we use globals
• Later we will pass parameters on the system stack.

41



2. Pass Parameters in Registers

• Set up registers before call and/or before return

• Generally … it’s a not a good idea to pass parameters in registers
• Procedure might change register contents

• However
• Some Irvine library procedures require values in registers (e.g., “Receives” and 

“Preconditions” for ReadString)

• Some Irvine library procedures return values in registers (e.g., “Returns” for ReadInt)

42



3. Pass Parameters on the System Stack

• Push parameters onto the system stack before the call 

• Two ways to use the parameters:
• Procedure moves parameters from the stack into registers/variables

• Set up a “stack frame”, and reference parameters directly on the stack

• Remove parameters and return to the calling program

• Much more later on this method

• This is the method used by high-level languages

43



Register vs. Stack Parameters

• Register parameters require dedicating a register to each parameter.

• Stack parameters make better use of system resources.

• Example:
• Two ways of calling Summation procedure.

44



Register vs. Stack Parameters

• Of course, methods of calling a procedure and passing parameters depend on the 
procedure implementation … and vice-versa.
• Some “setup” is involved (in the calling procedure)

• Some “bookkeeping” is involved (in the called procedure)

• Parameters in registers require register management

• Parameters on the system stack require stack management

45



Saving Registers

• Remember!

• There’s only one set of registers.

• If a called procedure changes any registers, the calling procedure might lose important 
data

46



• In call cases, when a procedure is called:
• Be aware of preconditions

• What conditions must be true before the procedure can perform its task?

• Be aware of what registers are changed (document!)

• Save and restore registers if necessary

47


