CS 271
Computer Architecture &
Assembly Language

Lecture 9
The System Stack
More MASM Procedures
Intro to Parameter Passing
2/1/22, Tuesday

Odds and Ends

e Label names

* Do not name them as L1, L2,... (our textbook give bad examples!)
* Taking points off starting from programming assignment 4

* Use meaningful names instead

* Indentation
* Align in-line comments as well

* Midterm: 2/8 (Next Tuesday) during lecture time, same classroom
* Review on Thursday

Lecture Topics:

* The System Stack

* More about MASM Procedures

* Documenting Procedures

* Register Management for Procedures
* Introduction to Parameter Passing

The System Stack

Stack

e Data structure (ADT)
* Last-in, first-out (LIFO or FILO)

* All operations reference the “top” of the stack

e Special names for operations
* push, pop

* Applications:
e Activation stack

Iterative implementation of recursive algorithms
Base conversion

Expression evaluation
Many others

The System Stack (Runtime Stack)

* The operating system maintains a stack
* Implemented in memory
* LIFO structure

 Managed by the CPU, using two registers
 SS: address of stack segment

* ESP: stack pointer (always points to “top” of stack)
* j.e., ESP contains the address of the top of the stack

PUSH and POP Instructions (32-bit)

* PUSH syntax
 PUSH r/m32
 PUSH immed

* POP syntax
* POPr/m32

PUSH Operation

* A push operation
* Decrements the stack pointer by 4
* Copies a value into the location pointed to by the stack pointer

* Actual decrement depends on the size of the operand
* Note: it’s best to use 32-bit (DWORD, 4-byte) operands

Example PUSH

* Suppose that ECX contains 317 and ESP contains
0200h. In this case, [ESP] is 25.

 The next instruction is

°* push ecx
* Execute push ecx
* ESP: 01FCh
e [ESP]: 317

* Note: ESP is decremented, then 317 is stored in
the stack

Stack Segment in Memory

Address Cohtents

01EC

O01FO0

01F4

O01F8

..\J ..\J ..Q ..\J

* Note: [ESP] means “content” of memory at the

address in ESP

ESP

ESP

—101FC

—))) — -

—10200

25

POP Operation

* A pop operation
* Copies value at ESP into a register or variable.
* Increments the stack pointer by 4

* Actual increment depends on the size of the operand
* Note: it’s best to use 32-bit (DWORD, 4-byte) operands

10

Example POP

Suppose that ESP contains O1FCh. In this
case, [ESP] is 317

The next instruction is

°* pop eax
Execute pop eax
eax how contains 317
ESP: 0200h
[ESP]: 25

Note: 317 is copied to EAX, then ESP is
incremented. Memory contents
unchanged.

Stack Segment in Memory

Address

Cohtents

01

01EC

~0

01

01

..\J ..\J ..Q ..\J

ESP

ESP

—101

317

—10200

—))) — -

25

Using PUSH and POP

* Save and restore registers when they contain important values. POP operands occur in
the opposite of the order of PUSH operands

push ecx ; save registers
push ebx

mov ecx,100h
mov ebx,0

; etce.

pop ebx ; restore registers
pop ecx

12

Example: Nested Loop

* Push the outer loop counter before entering the inner loop.

* Pop the outer loop counter when the inner loop terminates.

mov ecx,100
Ll:
push ecx

.
r

set outer loop count
; begin the outer loop
save outer loop count

mov ecx, 20 ; set inner loop count

L2: ; begin the inner loop
loop L2 ; repeat the inner loop
pop ecx ; restore outer loop count
loop L1 ; repeat the outer loop

13

When not to push

 Be sure that PUSH does not hide a return address

* Be sure that POP dose not lose a return address and/or replace needed values.

14

CALL and RET Instructions

 The CALL instruction calls a procedure
* Pushes the offset of the next instruction onto the stack
» Copies the address of the called procedure into EIP

* The RET instruction returns from a procedure
* Pops top of stack into EIP

15

Procedure call/return Example (p1)
malin PROC

EAX 7
mov eax, 175 EBX ?
mov ebx, 37 EDX 5
mov edx, 25 '
call Sum3 ESP 0200h
mov result,eax EIP 1202h (address of next instruction)
Stack Segment in
main ENDP Viemory
Address Contents
Sum3 PROC _etc
add eax, ebx
add eax, edx 01F8n ?
ret 01FCh ?
SumTwo ENDP 0200h 456

16

Procedure call/return Example (p2)
malin PROC

EAX 1/5
mov eax,175 EBX 37
mov ebx, 37 5
mov edx, 25 EDX >
call Sum3 ESP 0200h
mov result,eax EIP 1211h (address of call instruction)
Stack Segment in
main ENDP Memory
Address Contents
Sum3 PROC _etc
add eax, ebx
’ ?
add eax, edx 01F8h :
ret 01FCh ?
SumTwo ENDP 02001 456

17

Procedure call/return Example (p3)
malin PROC

EAX 175
mov eax, 175 EBX 37
mov ebx, 37 EDX)5
mov edx, 25
call Sum3 ESP 01FCh
mov result,eax EIP 2C6Bh (address of Sum3 procedure)
Stack Segment in
main ENDP Memory
Address Contents
Sum3 PROC _etc
add eax, ebx
4 ?
add eax, edx 01F8h —
ret 0 1 FC F] 1216I;c(lrdel‘tel;:;
SumTwo ENDP 0200 N 456

18

Procedure call/return Example (p4)
main PROC

EAX 237
mov eax, 175 EBX 37
mov ebx, 37
mov edx, 25 EDX 25
call Sum3 ESP 01FCh
mov result,eax EIP 2C7Ah (address of ret instruction)
Stack Segment in
main ENDP Memory
Address Contents
Sum3 PROC _etc
add eax, ebx 01F8h ?
add eax, edx
ret 01FCh 1216h
SumTwo ENDP 0200 N 456

19

Procedure call/return Example (p5)
malin PROC

EAX 237
mov eax, 175 EBX 37
mov ebx, 37
mov edx, 25 EDX 25
call Sum3 ESP 0200h
mov result,eax EIP 1216h (address of mov instruction)
Stack Segment in
main ENDP Viemory
Address Contents
Sum3 PROC _etc
add eax, ebx
add eax, edx 01F8n ?
ret 01FCh 1216h
SumTwo ENDP 0200h 456

20

The System Stack

* There is much more to learn about the system stack
* Parameter passing
* Activation records
* Etc.

* Be sure that you understand:
* How the stack works
* Push decrements, Pop increments
* The importance of keeping the stack aligned

21

More about MASM Procedures
Documenting Procedures
Register Management for Procedures

22

In MASM Procedures ... Beware!

* Avoid duplicate labels
* Labels inside a procedure are only visible within that procedure
* Don’t use the same label names in different procedures

* Preconditions: Be sure to set required registers before calling library procedures.

* Be aware of registers changed in procedures.

23

Local and Global Labels

* Procedures should be invoked by executing a call statement
* Bad style (and a very bad idea) to jump into a procedure from outside the procedure

* Procedures should terminate by executing a ret statement
* Bad style (and a very bad idea) to jump to a label outside a procedure

* Assembly language permits implementing some very bad ideas and very
bad styles

* However, good programmers don’t use them

24

Nested Procedure calls

* Any procedure might call another procedure
* Return addresses are “stacked” (LIFO)

* RET instructions must follow the order on the stack
* This is one very good reason not to jump into or out of a procedure!

* It is essential that the stack be properly aligned when the RET instruction is
executed!!

25

Documenting Procedures

 Documentation for each procedure:
* Description: A description of the task accomplished by the procedure
* Receives: A list of input parameters; state usage and requirements
* Returns: A description of values returns by the procedure
* Preconditions: List of requirements that must be satisfied before the procedure is called

* Register changed: List of registers that may have different values than they had when the procedure
was called

* |f a procedure is called without satisfying the preconditions, the procedure’s creator
makes no promise that it will work.

26

Example Procedure Heading Documentation

;Procedure to calculate the summation

; of integers from a to b.
;receives: a and b are global wvariables
;yreturns: global sum = a+(a+l)+ ... +b
;preconditions: a <= b

;registers changed: eax,ebx,ecx

calculate PROC

ret
calculate ENDP

27

Saving Registers

* If a procedure changes any registers, the calling procedure might lose
important data

* Two ways to save data:
* By the calling procedure
* Registers may be saved before call, and restored after return

* By the called procedure
* Registers may be saved at the beginning of the procedure, and restored before the return

28

Saving / Restoring Registers

 Methods:
1. Move register contents to named memory locations, then restore after procedure
returns.

2. Use pushad and popad
Option 1: calling procedure pushes before call, pops after return
 Option 2: called procedure pushes at beginning, and pops before the return

3. Save selected registers on the system stack
Option 1: calling procedure pushes before call, pops after return
 Option 2: called procedure pushes at beginning, and pops before the return

29

Method 1:
Save Register Contents in Memory

 Example (in main ... aReg, bReg declared in .data)

mov aReg, eax ;save registers
mov bReg, ebx

mov eax, count ;Set parameters
mov ebx, OFFSET val

call someProc

mov eax, aReg ;restore registers

mov ebx, bReg

30

Method 2:
Save all Registers on the System Stack

* pushad pushes the 32-bit general-purpose registers onto the stack
* Order: EAX, ECX, EDX, EBX, ESP, EBP, ESI, EDI

* popad pops the same registers off the stack in reverse order
e Note: it’s best to use 32-bit (DWORD) operands

31

Method 2:
Save all Registers on the System Stack

* Example (Option 1: in calling procedure):

pushad ;save registers
call someProc

popad ;yrestore registers

32

Method 2:
Save all Registers on the System Stack

* Example (Option 2: in the called procedure):

calcSum PROC
pushad ;save registers

;procedure body

popad ;restore registers
ret
calcSum ENDP

33

Method 3:
Save Selected Registers on the System Stack

* Example:
* push eax
* pushes the contents of eax onto the system stack
° pop eax
* Pops the top of the system stack into eax

34

Methods 2 and 3:
Save Registers on the System Stack

* Warnings:
* Be sure that values don’t get lost

* Be sure that the system stack is properly aligned
* The return address must be on the top of the stack when the ret statement is executed!!

35

* Experiment with MASM

* Try several ways to do some simple tasks
* Use DEBUG to see what happens

Introduction to Parameter Passing

37

Parameters

* Definitions:
* Argument (actual parameters) is a value or reference passed to a procedure
e Parameter (formal parameters) is a value or reference received by a procedure

* Return value is a value determined by the procedure, and communicated back to the
calling procedure.

* No theoretical limit, but practicality and readability rule.

38

Parameters Classifications

* An input parameter is data passed by a calling program to a procedure.

* The called procedure is not expected to modify the corresponding argument variable, and even if it does, the
modification is confined to the procedure itself.

* An output parameter is created by passing the address of an argument variable when a
procedure is called.

* The “address of” a variable is the same thing as a “pointer to” or a “reference to” the variable. In MASM, we use
OFFSET.

* The procedure does not use any existing data from the variable, but it fills in new contents before it returns.

* An input-output parameter is the address of an argument variable which contains input that will
be both used and modified by the procedure.

* The content is modified at the memory address passed by the calling procedure.

39

Passing Values/Addresses to/from Procedures

* Methods:

1.Use shared memory (global variables)
2.Pass parameters in registers

3.Pass parameters on the system stack

40

1. Use Shared Memory (Global Variables)

* Set up memory contents before call and/or before return

* Generally ... it’s a bad idea to use global variables

* Procedure might change memory contents needed by other procedures (unwanted
side-effect)

* For Program #1 - #4 ... we use globals
e Later we will pass parameters on the system stack.

41

2. Pass Parameters in Registers

* Set up registers before call and/or before return

* Generally ... it’s a not a good idea to pass parameters in registers
* Procedure might change register contents

* However

* Some Irvine library procedures require values in registers (e.g., “Receives” and
“Preconditions” for ReadString)

* Some Irvine library procedures return values in registers (e.g., “Returns” for ReadInt)

42

3. Pass Parameters on the System Stack

* Push parameters onto the system stack before the call

* Two ways to use the parameters:
* Procedure moves parameters from the stack into registers/variables
* Set up a “stack frame”, and reference parameters directly on the stack

* Remove parameters and return to the calling program

* Much more later on this method
* This is the method used by high-level languages

43

Register vs. Stack Parameters

* Register parameters require dedicating a register to each parameter.

e Stack parameters make better use of system resources.

* Example:
* Two ways of calling Summation procedure.

Method 1 (parameters in registers).
pushad ;save registers

mov ebx, low

mov ecx,high
call Summation
mov sum, eax

popad ;restore registers

44

Method 2

(parameters on stack).
push low

push high

push OFFSET sum
call Summation

Register vs. Stack Parameters

* Of course, methods of calling a procedure and passing parameters depend on the
procedure implementation ... and vice-versa.

 Some “setup” is involved (in the calling procedure)
* Some “bookkeeping” is involved (in the called procedure)

* Parameters in registers require register management

* Parameters on the system stack require stack management

45

Saving Registers

e Remember!

* There’s only one set of registers.

* |f a called procedure changes any registers, the calling procedure might lose important
data

46

* In call cases, when a procedure is called:

e Be aware of preconditions
* What conditions must be true before the procedure can perform its task?

* Be aware of what registers are changed (document!)

 Save and restore registers if necessary

