
1

CS 162 Worksheet 1

1. C++ data type review: indicate if each the following matched with the correct type:

Constant Type Right/Wrong (correction)

4.0 int

5 int

‘a’ string

5. double

5 char

“5.0” char

2. Arithmetic Operators

Operator Name Example

+

-

*

/

%

3. Relational operators: to perform comparison of variables, constants, or expressions in C/C++

Operators(s) Meaning Example

==

!=

<

>

<=

>=

4. Conditional Statements: if/else

What will each implementation print if ‘grade’ stores 95?
Implementation 1:

if (grade >= 90) {

cout << "A range" << endl;

}

else if (grade >= 80) {

cout << "B range" << endl;

}

else if (grade >= 70) {

cout << "C range" << endl;

}

else {

cout << "Below C range!" << endl;

}

2

What did you notice about if and else?

if:

else:

5. Logical Operators: to create compound conditions

Operators(s) Meaning Example

&&

||

!

Quick check: Which of the following is NOT a condition to check if the integer x is in the range [-1 to 5]?

A. x >= -1 && x <= 5

B. -1 <= x <= 5

C. !(x < -1 || x > 5)

D. x > -2 && x < 6

6. Common mistakes

a. Using assignment operator (=) rather than equality check operator (==)

Correct the following code:

int x;

cin >> x;

if (x = 0)

 cout << “x is 0” << endl;

Tip: When comparing with a constant, many companies recommend flipping the order to:

if (0 == x) { /*some code*/ }

This way, the code won’t compile if you accidentally write:

if (0 = x) { /*some code*/ }

b. Using multiple if statements rather than if … else

Correct the following code:

int x, y;

cin >> x >> y; //takes two inputs, and store them into x and y, respectively
if (x != y)

 x = 5;

if (x == y)

 y = 7;

c. Wrong formulated conditions.

Correct the following code:

if (0 <= x <= 9) { /*some code*/ }

if (x == 0 || 1) { /*some code*/ }

3

7. Loops

a. for loop: used when you DO know the number of times to iterate BEFORE the loop starts

Ex: print out all multiples of 7 from 0 to 100, inclusive

b. while loop: used when you DON’T know how many times to iterate before the loop starts

Ex: let user guess my secret number until they are correct

int guess;

int secret_num = /* some code */;
cin >> guess;

// complete the rest….

Tip: Use while loop whenever you see/use “until”, until x == while not x

For example: keep guessing until correct == keep guessing while not correct

c. do-while loop: often used to run/play again. Loop body is executed at least once

Ex: ask the user whether they want to run the program again, 1-yes, 0-no

d. nested loop: The inner loop executes completely for each single iteration of the outer loop

Ex: Trace through the execution of the following code and show what will be printed.

for (int i = 0; i < 2; i++) { i j

 for (int j = 0; j < 3; j++) {

 cout << i << “ ” << j << endl;

 }

}

