CS 162 Worksheet 6
1. Accessor and Mutators:
Create a garage class that has a dynamic array of vehicle structs. Make sure you create an int variable to indicate the number of vehicles and follow the rules for encapsulation. Write the declarations for mutator, and accessor functions needed to access the members in the garage. Use const when necessary.
struct vehicle {
 string name;
 int num_wheels, num_seats;
 bool motor;
};

class garage {
	private:

 ____________________________; //dynamic array of vehicles

 ____________________________; //number of vehicles

 public:

 ____________________________; //accessor for dynamic array

 ____________________________; //mutator for dynamic array

 ____________________________; //accessor for number of vehicles

 ____________________________; //mutator for number of vehicles
};

2. Use of const:
Given the following class declaration, explain each use of const. For a-d, tell what is legal, what is not illegal, and why.
class MyClass {
private:
	int member1;
public:
	void fun1(const int x);
	int fun2() const;
};

a. void Myclass::fun1 (const int x){
	int y = x; 			
}

b. void Myclass::fun1 (const int x){
	x = member1; 	
}

c. int Myclass::fun2() const{
	return this->member1;	
}

d. int Myclass::fun2() const{
	this->member1 = 2;
	return this->member1;
}

3. Classes and objects:
Read and trace the code from the following three files, and answer the following questions.
	garage.h:

[image:]

	garage.cpp:

	[image:]
	[image:]

	
	

	main.cpp:

[image:]

1. Between lines 11 and 12 in garage.h, which one is the default constructor, and which one is the non-default constructor?

2. What is printed by line 8 in main.cpp?

3. What is printed by line 9 in main.cpp?

4. Is anything printed by line 10 in main.cpp? If so, what?

5. Is anything printed by line 11 in main.cpp? If so, what?

6. What is printed by line 13 in main.cpp?

7. What is printed by line 14 in main.cpp?

8. Is anything printed by lines 15 and 16 in main.cpp? If so, what?

9. What is printed by line 17 in main.cpp?

10. Is anything printed by line 18 in main.cpp? If so, what?

11. Is anything printed by line 19 in main.cpp? If so, what?

12. Is anything printed by line 21 in main.cpp? If so, what?

13. Is anything printed by line 23 in main.cpp? If so, what?

14. What would happen if we additionally called g3.delete_memory() at the end of main()?

4. Understanding errors

For each program and compiler / linker error shown below, answer the following questions: In what file and line of code does the error
appear? In your own words, what does the error mean? How would you fix this error?

Hint: compiler errors are described in great detail, and there are only a couple of common linker errors—you shouldn’t even need to look at
the code to understand, at least superficially, what’s causing the problem (though you may need to see the code to fully understand the
issue).

1. one.cpp:
[image:]

error:
$ g++ one.cpp
one.cpp: In function ‘int main()’:
one.cpp:12:17: error: ‘x’ was not declared in this scope
 12 | cout << x << endl;
 | ^

2. two.cpp:
[image:]

error:
$ g++ two.cpp
two.cpp: In function ‘int main()’:
two.cpp:6:9: error: ‘my_function’ was not declared in this scope
 6 | my_function();
 | ^~~~~~~~~~~

3.
	three.h:

[image:]
	foo.cpp:

[image:]
	main.cpp:

[image:]

Error:
$ g++ three.cpp three_main.cpp
three_main.cpp: In function ‘int main()’:
three_main.cpp:4:13: error: too many arguments to function ‘void func()’
 4 | func("Hello!");
 | ~~~~^~~~~~~~~~
In file included from three_main.cpp:1:
three.h:4:6: note: declared here
 4 | void func();
 | ^~~~

0.
	hello.h:

[image:]
	hello.cpp:

[image:]
	main.cpp:

[image:]

Error:
$ g++ four.cpp four_main.cpp
/bin/ld: /tmp/ccVopdR9.o: in function `main':
four_main.cpp:(.text+0x5): undefined reference to `hello_world()'
collect2: error: ld returned 1 exit status

2

image4.png
VWONOURWNR

WWWWNNNNNNNNNNERRRERRRR R
WNRFOUVUONOURWUNROOVUONOUAWNRO®

#include <iostream>
#include "garage.h"
using namespace std;

int main(){
gar‘ageigl;
cout << gl.size() << endl;
gl.set_car(@, "Tesla");
gl.get_car(@);

garage g2(5);

cout << g2.size() << endl;
g2.set_car(@, "Maserati");
g2.set_car(1, "Jeep");

cout << g2.get_car(®) << endl;
g2.get_car(1);

g2.get_car(5);

g2.funl();
garage& g3 = g2.fun2(gl);

// Don't forget to delete the

// garages' dynamic memory, if
// they have any!
gl.delete_memory();
g2.delete_memory();

// Don't delete g3's memory! It's
// just a reference to g2

return @;

image5.png
VCONOU A WN R

11
12
13
14

#include <iostream>

using namespace std;

int

create_x() {
int x = 5;
return x;

main(){
create_x();

cout << x << endl;
return ©;

image6.png
VONOU R WNR

L=
(S

#include <iostream>
using namespace std;

int main(){
my_function();

}

void my_function() {

cout << "Hello, world!™ <<

}

endl;

image7.png
oOuv A wNR

#ifndef THREE_H
#define THREE_H

void func();

#endif

image8.png
VCONOUAWN R

#include <iostream>
#include "three.h"

using namespace std;
void func(string value) {

cout << value << endi;

b

image9.png
uAwN R

#include "three.h"

int main () {
func("Hello!"™);
b

image10.png
VWONOURWNR

#ifndef FOUR_H
#define FOUR_H

//This function should simply
//print "Hello, world!" to the
//termial

void hello_world();

#endif

image11.png
VWNOUAWN R

#include <iostream>
#include "four.h"
using namespace std;

void hello_world(string some_string) {

cout << "Hello, world!"™ << endl;

b

image12.png
#include "four.h"

int main () {
hello_world();
}

image1.png
VONOU R WNR

#include <iostream>
#include <string>

using namespace std;

class garage{
private:
int num_cars; //Number of cars in garage
string* cars; //An array of car names
public:
garage();
garage(int num_cars);

// A function that deletes the garage's

// dynamic memory. Make sure to call it

// before the garage falls out of scope, or else
// you'llL have a memory Leak. Note: there's a

// better way to do this via "destructors", but
// we may not have covered destructors in Lecture
// by the time you see this worksheet.

void delete_memory();

// Mutator for individual car within array
void set_car(int index, string value);

// Accessor for individual car
string get_car(int index) const;

// Accessor for num_cars
int size() const;

// Some other member functions for
// educational purposes

garage funl() const;

garage& fun2(const garage&);

image2.png
VONOU R WNR

WWwwwwwwwwwhNNNNNNNNNNRRRRRRRRRR
VCONOUVPWNROVWIIOUVPRWUNROOLINONUAWNRO®

#include "garage.h"

// Default constructor implementation. Sets

// .num_cars = @, and .cars = nullptr

garage::garage() : num_cars(@), cars(nullptr) {
cout << "Garage()" << endl;

}

// Nondefault garage ctor. Sets .num_cars = n,

// and .cars = new string[n]

garage::garage(int n) : num_cars(n), cars(new string[n]) {
cout << "Garage(int)" << endl;

}

void garage::delete_memory() {
// Equivalently, if(cars) {...}
if (cars != nullptr) {
delete [] cars;
cars = nullptr;

}

void garage::set_car(int index, string value) {
if (index < @ [| index >= num_cars){
cout << "Error! set_car index out of bounds!" << endl;
} else {
cars[index] = value;
}
}

string garage::get_car (int index) const {
if (index < @ [| index >= num_cars){
cout << "Error! get_car index out of bounds!" << endl;
return H
} else {
return cars[index];

}

image3.png
40
a1
42
43
a4
a5
a6
a7
a8
a9
50
51
52
53
54
55
56
57
58
59

int garage::size() const {
return num_cars;

}

garage garage::funl() const {
// Create an empty garage and return its
// value (reminder: return values are copied,
// unless you're returning a reference, and
// you can't return a reference to a Local variable)
garage empty_garage;
return empty_garage;

}

garage& garage::fun2(const garage& some_garage) {
// Ignore some_garage and just return *this
// (i.e., return THIS garage). However,
// we're returning a garage, not a garage&
// or a garage*, so it returns a copy.
return *this;

