CS 162
Intro to Computer Science |l

Lecture 1
Review C++ Basics
1/10/24

) Oregon State

Odds and Ends

e Assignment 1 posted

* Check discord -> notes & resources

VS code setup

Bypass DUO

C/C++ for python programmer
C++ tutorial

Map a network drive

Linux commands

Lecture Topics:

* Review C++ Basics:
* Data type and Variables
Program Input/Output

Control Structure
e |f/else
* Loops
Functions
* Pass by value vs. Pass by reference

1D static array

C++ Program Structure

*main () function: -- entry point into the program

* Include statements at the top of the file
* j.e., #include <iostream>

#include <iostream> //standard I/0, writing to / reading from the console/file

-

{intlmain() {

return 0;

}

|5t1—@_: bt l o p 0 —r a b,

C++ Primitive Types

* Data type: define how the computer’s memory is allocated and how data is stored and

manipulated
P B a3 4B4R7ER 28 R tee
* Primitive data types in C++: char double, float, int, long, short, bool\fa&

* Fundamental
* short/int/long: whole numbers, e.g. 45, -89, 0
 float/double: real numbers, e.g. 2.612, -30.5, 2.3e5
* char: a single character, e.g. ‘A, ‘&’, ‘x’, ‘\/
* bool: boolean, e.g. true, false (all lower case)
* string: e.g. “A”, “hello world”

* Signed by default — can represent both positive and negative values

* Unsigned — represent non-negative values only (i.e., double the range of positive values)
* unsigned int, unsigned short, unsigned long

5

Variables

e Variable — Memory location with name and type to store value

 Variable declaration — Statement requesting variable w/ name and type

. éxamples: ol
ﬁlP double height;

int age;

* Declare and initialize a variable in the same statement:
* intvalue \=,_5;

 Variable/identifier name: Start with letter(upper-case, lower-case, underscore
(1)), followed by sequence of letters and digits
* Good examples: hiThere, two_plus_two, hello
* Bad examples: 5dogs, hi-there, hello there
e Can’t use keywords

Program Input/Output

variable to print

e C++: cout

* Example: ,/—,\ -

std::cout K |[“"The integer value 1s: 4<< valuey

T
* What about the newline? ~—
e “\n’ or std::endl

e C++: cin

* Example: "

std::cinl>> value;

C++ If/else and switch statements
T char _jmm@e,
p _

if (a == 0) 4 switch (grade) {
/* Do something. */ case 'A’
} cout << "Excellent!" << endl;
else if (b != 0) { —2 break;
/* Do something different. */ case 'B’
} case 'C'
else { cout << “Well done!" << endl;
/* Do a third thing altogether. break;
*/ case 'D’ :
cout << “You passed!" << endl;
break;
case 'F'
cout << “Try again!" << endl;
break;
default

cout << “Invalid grade!" << endl;

C++ Loops

o C++; while (i != 16) {
o for, Whi|e, do-while /* Do something repeatedly!unt11 i is 1l6. */
}
int 1i;
for (i = 0; i < 32; i++) {
/* Do something 32 times. */
}
do {

/* Do something repeatedly until i is 16. */
}while (1 !'= 10);

Recap: Ioops

DEIE

Al

|I'|

‘ n‘ f

|qn' ER

while (not edge) {
run();

do {
run();
} while (not edge);

C++ Functions

<iostream>
td; .
: e Label:
float cal_avg(float numl, float num2); Function declaration/prOtOtype
it . .
"E” main() * Function call
float total = 0 * Function definition
float count = o; * Function name
cout << "Enter total: ";
cout << "Ente * Parameter(s)
cout << "Enter count: ";
cin >> count;) Argument(S)

float average = cal avg(total, count);
cout << "Avg.: " << average << endl;

0;

}

float cal avg(fleoat numl, float num2){
numl/num2;

} 11

C++ Pass by Value

volid swap (int, 1int); 5

int main () Addrl &a
int a=5, b=10; 10
swap (a, b); Addr2 &b

cout << Va: " <K a << V"b: 7" K by
} X
vold swap (int x, 1nt v) >/€{1O
int temp = x; Addr3 8x
X = V; 26 5

y = temp; Addr4d &y

12

C++ References

e Reference == a variable that refers to a particular memory address

* Reference declaration: int 1 = 4; int &i ref = i;
* Areference MUST be initialized
* Once initialized, the memory address referred to by a reference variable
can’t change

* i.e.1 ref above must always refer to the address of 1.

e Quick check: what will the following code print?

int a =7, b =2, &ref = a;

cout << a << N ™ << ref << endl; // prints

ref = b;

cout << a << N ™ << ref << endl; // prints

-> Trying to make a new assignment to a reference changes its value

13

C++ Pass by Reference

volid swap (int &, 1int &); —
int main () { 5/ 10

int a=5, b=10; oot fa &

swap (a, b); by

cout << Ma: ” << a << “b: ” << by 1,6 5
} Addr2 &b &y
vold swap(int &x, 1nt &y) {

int temp = x;

X = Vy;

y = temp;

14

1D static Arrays

* An array is a contiguous block of memory holding values of the same data type
* Static Arrays: created on the stack and are of a fixed size, during compiling time

* 1-dimensional static array: int stack arrayl[10];
* You can initialize an array at the same time as you declare it:
int arrayl] = {1,2,3,4,5,6,7,8,9,10};
Note: you can omit the size if you initialize the array when you declare it
« Array name: stores the starting address of the array
* i.e., array == &array == &array[0]
« Conceptually, the array above looks like this:

Array index 0 1 2 3 g 5 B 7 8 9

Value 1 2 3 4 5 6 L 8 9 110

15

C/C++ Pointers

* Pointers == variables that hold memory addresses

Variable declaration: int a = 5;
e Creates a variable on the stack of size int with the value 5

Pointer declaration: int *b = &a;

* Creates a pointer variable on the stack which can hold an address of an int and sets the
value of the pointer (the address the pointer points to) to the address of a

* Dereferencing Pointer: cout << *b << endl;
* Dereference: access the value stored in the memory address held by a pointer
* Will print the value stored at the address which b points to

* Every pointer points data of a specific data type

16

C++ Pointers

vold swap (int *, int *); }5/10
int main() { L
int a = 5, b = 10; b

swap (&a, &b); ;é 5?
cout << Ma: " << a << “pb: 7" <K b; hadre &
} X
vold swap (int *x, 1nt *y) { Addrl
int temp = *x; Addr3 &x
*x o= Ky y /*v
*y = temp; Addr2

} Addr4 &y

17

	Slide 1: CS 162 Intro to Computer Science II
	Slide 2: Odds and Ends
	Slide 3: Lecture Topics:
	Slide 4: C++ Program Structure
	Slide 5: C++ Primitive Types
	Slide 6: Variables
	Slide 7: Program Input/Output
	Slide 8: C++ If/else and switch statements
	Slide 9: C++ Loops
	Slide 10: Recap: loops
	Slide 11: C++ Functions
	Slide 12: C++ Pass by Value
	Slide 13: C++ References
	Slide 14: C++ Pass by Reference
	Slide 15: 1D static Arrays
	Slide 16: C/C++ Pointers
	Slide 17

