
CS 162
Intro to Computer Science II

Lecture 10

File I/O

2/5/24

1

Odds and Ends

• Design 2, quiz 2 past due

• Lab 5 posted

• Assignment 2 rubrics posted

• Assignment 1 demo due Friday (2/9)

2

How to Debug Memory Leaks?

3

• How to fix it?

 locate your memory leaks:

 Compile your program with –g flag:

 g++ [yourfile.cpp] –g –o [output]

 Then run valgrind with the --leak-check=full flag:

 valgrind --leak-check=full ./[output]

 This shows which line(s) causes memory leaks:

How to Debug Seg Fault?

4

• What causes a seg fault?
• Many reasons… but likely it is caused by your program trying to access an

invalid memory address.

• i.e.

 int * p = nullptr;

 *p = 10;

How to Debug Seg Fault?

5

• How to fix it?

Step 1: locate your seg fault:

 Compile your program with –g flag:

 g++ [yourfile.cpp] –g –o [output]

 Then run valgrind:

 valgrind ./[output]

 This shows which line causes seg fault:

How to Debug Seg Fault?

6

• How to fix it?

Step 2: Fully analyze your program flow till the line that causes the seg
fault.

You may inspect the values of your variables using cout statements

In lab 5, we will introduce a very powerful debugging tool (GDB) that
allows you to see what is “inside” the program while it is running.

GDB and valgrind are your best friends when debugging!!!

Today’s Topics:

• File I/O

7

File I/O

• File input output

• Allows us to read and write data to files for long term storage

• General algorithm
1. Create file object

2. Open the file

3. Perform action on the file (read/write/etc.)

4. Close the file

8

File Stream Objects

#include <fstream> //input output file stream class

using namespace std;

int main() {

fstream f; //create a file stream object

ifstream fin; //create an input-only file stream

ofstream fout; //create an output-only file stream

return 0;

}

9

Open the file

int main() {

fstream f; //create the object

f.open (“file.txt”, ios::app); //open(const char* filename, mode)

return 0;

}

• Modes (default is input & output for fstream)

• ios::in → input: file open for reading

• ios::out → output: file open for writing

• ios::binary → binary: operations are performed in binary mode

• ios::ate → at end: output position starts at the end of the file

• ios::app → append: all output operations happen at the end of the file, appending to the existing
contents

• ios::trunc→ truncate: existing file contents are discarded

10

Open the file

int main() {

fstream f; //create the object

f.open (“file.txt”, ios::app); //open(const char* filename, mode)

return 0;

}

• Modes can be combined using the bitwise OR operator
• f.open (“file.txt”, ios::out | ios::app);

• Not all combination of modes are valid
• E.g. append and truncate

11

Warning about opening files

• If there is already a file open in the stream it will not open another file
• Check if the stream has a file open using is_open() or with fail()

f.open (“some_file.txt”);

if (f.is_open()){

//perform operations

}

else{

cout << “Error opening file” << endl;

}

12

Perform Action on the File

• Reading (Precondition: the file is not empty)
int num = 0;

ifstream f;

f.open (“numbers.txt”);

f >> num;

//can read the entire file by doing a while (!f.eof()){}

//(eof == end of file)

//read a single character with get(), read a line with getline()

• Writing (Caution: know where the cursor is in the file)
ofstream f;

f.open(“an_awesome_story.txt”);

f << “Once upon a time…” << endl;

13

Close the file

• Don’t forget to do this when you are done with the file
my_file_obj.close();

14

File Input – Using “space” as delimiter

ifstream fin;

fin.open (“book.txt”);

if (!fin.is_open())

return 1;

while (!fin.eof()){

string tmp_string;

int tmp_int;

// read non-blank characters;

fin >> tmp_string >> tmp_int;

cout << “Text: “ << tmp_string << endl;

cout << “Int: “ << tmp_int << endl;

}

fin.close();

15

File Input Strategies

• What if the input file does not delineate text with spaces?
• E.g. “student_name,grade,gpa”

• getline(cin, dest_string);

• Reads an entire line at once

• Previously used this when accepting user input from the console

• getline(cin, dest_string, ‘,’);

• Keeps reading text until reaching the specified char

• Discards the specified char

• Can be used to handle an alternate delimiter (e.g. comma)

16

The Newline Character

• Most user-readable files use newlines
• Makes the text much easier to read

• Often used to indicate “new entry”
• Make sure that your code handles these correctly

• Hint: Use std::istream::ignore()
• Discards one or more characters from the input stream

• Useful for discarding newline characters

• Common usage: cin.ignore() → throw away the next char

17

http://www.cplusplus.com/reference/istream/istream/ignore/

File Output

• You control the delimiters, newlines, etc.

• Easier to handle
string output_file = “book_stats.txt”;

ofstream fout;

fout.open (output_file.c_str(), ios::app);

if (!fout.is_open()){

cout << “Error, unable to open the file!” << endl;

return 1;

}

fout << “Hello world!” << endl;

fout.close();

18

File I/O Demo

19

	Slide 1: CS 162 Intro to Computer Science II
	Slide 2: Odds and Ends
	Slide 3: How to Debug Memory Leaks?
	Slide 4: How to Debug Seg Fault?
	Slide 5: How to Debug Seg Fault?
	Slide 6: How to Debug Seg Fault?
	Slide 7: Today’s Topics:
	Slide 8: File I/O
	Slide 9: File Stream Objects
	Slide 10: Open the file
	Slide 11: Open the file
	Slide 12: Warning about opening files
	Slide 13: Perform Action on the File
	Slide 14: Close the file
	Slide 15: File Input – Using “space” as delimiter
	Slide 16: File Input Strategies
	Slide 17: The Newline Character
	Slide 18: File Output
	Slide 19: File I/O Demo

