
CS 162
Intro to Computer Science II

Lecture 11

OOP

Accessors vs. Mutators

this keyword, const

2/7/24

1

Odds and Ends

• Assignment 2 text file got updated last Thursday (Feb 1st)
• Redownload the zip file to get the latest text file

• How to error handling the age? Check here:
https://classes.engr.oregonstate.edu/engr/winter2023/engr103-
010/demo/week8/error.cpp

• Midterm Exam date update:
• Previous: Monday of week 6 (2/12)

• Now: Friday of week 6 (2/16)

2

https://classes.engr.oregonstate.edu/engr/winter2023/engr103-010/demo/week8/error.cpp
https://classes.engr.oregonstate.edu/engr/winter2023/engr103-010/demo/week8/error.cpp

Today’s Topics:

• Intro to OOP

• Accessor vs. Mutator functions

• this keyword (pointer)

• Separate class files

3

Classes

• We are now moving into the concept of OOP →

Object Oriented Programming

• Classes are very similar to structs
• Structs are collections of data

• Classes can have collections of data and perform operations

→ classes are simply more powerful

4

Why use a class?

• Structs can’t “do” anything

• Classes can have functionality built in

• Example: mystring.length()
• mystring is a string object

• mystring has an internal member variable that tracks the length

• length() is a member function in string class

5

Class in real world…

• Write a program to model a university

• Use specific classes to represent the real-world objects that are part of a
university
• Students

• Instructors

• Courses

• Each of these classes would have its own member variables (attributes) and
member functions, and they would interact by sending messages to each other
via member functions

6

Class in real world…

• Our Student class might look like this:
• Member variables (attributes):

• Name

• ID

• GPA

• Current courses

• Completed courses

• Etc.

• Member functions:
• Register for course

• Submit assignment

• Receive grade

7

Class in real world…

• Our Instructor class might look like this:
• Member variables (attributes):

• Name

• ID

• Office location

• Current courses

• Past courses

• Salary

• etc.

• Member functions:
• Assign grade

• Assign homework

• Assign exam

• etc.

8

Class in real world…

• Our Course class might look like this:
• Member variables (attributes):

• Title

• CRN Number

• Instructor

• Enrolled students

• Assignments

• Student grades

• etc.

• Member functions:
• Enroll student

• Drop student

• Add assignment

• Add grade

• etc.

9

Why classes are good?

• Straightforward
• Have a good understanding of these things and how they interact

• Reusable
• All the relevant member variables and member functions in a single package (self-

encapsulated)

10

Today’s Topics:

• Intro to OOP

• Accessor vs. Mutator functions

• this keyword (pointer)

• Separate class files

11

Basic Example

• Suppose that we create a Point class
• It contains an X value and a Y value

• We can create member functions to move the point, display the value, or perform other
manipulations

• Demo…

12

C++ Access Specifiers

• C++ includes the concept of access specifiers (modifiers)

• For now, we will introduce two:
• public: these variables and functions are accessible and modifiable to any part of the

program

• private: can only be accessed or modified by code within the same class

• Why would we want to make something private?

13

Introducing Encapsulation

• Hide the details of your class from others
• Make your class easier to maintain

• Helps avoid broken code

• Consider the Point class
• What if we change int x;→ int x_position;

• That’s a problem for anyone who was using our Point class

14

Example of Broken code
class Point {

public:

int x_position;

int y_position;

void move_left(int);

};

15

int main () {

 Point p1, p2;

 p1.x = 8;

 p1.y = 4;

}

The variable
names no

longer match

How to avoid this problem?

• Make x and y private!
• So they cannot be modified outside of our class

class Point {

private:

int x;

int y;

public:

void move_left(int);

};

• Demo…

• Wait a second… Once x and y are private, how to we access or modify the state of an
object now?

16

How to Implement Encapsulation?

• Introduce the concept of accessor functions
• Functions that are used to get (or access) values of an object from outside (or inside) the

class

• E.g. implement get_x() and get_y()

• Now there’s a layer of abstraction between the implementation (your code) and the interface
(how people interact with your code)

• Details such as internal variable names no longer matter

• mutator functions are used to set (or mutate) values of an object from outside
(or inside) the class
• E.g. set_x() and set_y()

17

Accessor and Mutator Functions

• Use a consistent naming scheme
• get_grade(), get_location(), get_name()

• set_grade(), set_location(), set_name()

• Accessors are commonly known as “getters”

• Mutators are commonly known as “setters”

• Demo…

18

Why are accessors and mutators critical?

• In combination with access specifiers, accessors and mutators allow us to control
access

• Especially useful when you want to have “read-only” member variables
• Users can retrieve the variable using a public “getter” function

• They cannot modify a private value unless you provide a “setter”

19

How secure are access specifiers?

• This is not meant to prevent people from looking at your source code

• A programmer could still open your .cpp file and look at the names of “private”
variables

• The concept of public and private members is enforced by the compiler

• You will receive a compile-time error if you try to access unauthorized variables
or functions

20

Classes vs. Structs

• Structs
• Convention: No functionality

• Default public

• Classes
• Functionality

• Default private

• Convention:
• member variables: private

• member functions: public

21

Vocab

• Struct: a type definition without any member functions; collection of data items
of diverse types

• Class: a type definition with both member variables and member functions

• Object: instance of the class

• Member Variable: variable that belongs to a particular struct/class

• Member Function: function that belongs to a particular class

• Encapsulation: the details of implementation of a class are hidden from the
programmer who uses the class

22

Review

• Abstraction vs. Encapsulation
• Abstraction: hide unwanted details while giving out most essential details

• i.e. 10,000 feet view

• Encapsulation: hide the code and data into a single unit
• In short, abstraction hides details at the design level, while encapsulation hides details at

the implementation level

• Classes have member variables and functionality

• Contents are private by default
• Traditionally member variables are private with member functions being public
• Use accessors and mutators to work with private member variables

• get_grade(), get_location(), get_name()

• set_grade(), set_location(), set_name()

• Classes are typically written with their own header (.h) and implementation
(.cpp) files

23

this Keyword

• Can be used inside any class functions as a pointer to the object with which the
function was called

• “this” always points to the object being operated on

• Using this can be helpful
• Make sure we’re referring to the data members of a class, not to other variables that might

be in scope.

• E.g. when a function parameter has the same name as one of its data members

void Point::set_x(int x){

this->x = x;

}

• Demo…

24

Const

• To prevent changes to an object being passed, put const the parameter listing
• E.g. bool is_greater (const Point& a, const Point& b);

• If a function isn’t supposed to change anything, put a const at the end
• e.g. void print() const;

• void Point::print() const {/* definition */}

• Will cause an error if the code in print changes anything

• If using const member variable, it has to be initialized in constructor(s) using
initialization list
• E.g. Point::Point():z(5){} //where z is defined as a const int

• Demo…

25

	Slide 1: CS 162 Intro to Computer Science II
	Slide 2: Odds and Ends
	Slide 3: Today’s Topics:
	Slide 4: Classes
	Slide 5: Why use a class?
	Slide 6: Class in real world…
	Slide 7: Class in real world…
	Slide 8: Class in real world…
	Slide 9: Class in real world…
	Slide 10: Why classes are good?
	Slide 11: Today’s Topics:
	Slide 12: Basic Example
	Slide 13: C++ Access Specifiers
	Slide 14: Introducing Encapsulation
	Slide 15: Example of Broken code
	Slide 16: How to avoid this problem?
	Slide 17: How to Implement Encapsulation?
	Slide 18: Accessor and Mutator Functions
	Slide 19: Why are accessors and mutators critical?
	Slide 20: How secure are access specifiers?
	Slide 21: Classes vs. Structs
	Slide 22: Vocab
	Slide 23: Review
	Slide 24: this Keyword
	Slide 25: Const

