CS 162
Intro to Computer Science |l

Lecture 11
OOP
Accessors vs. Mutators
this keyword, const
2/7/24

) Oregon State



Odds and Ends

* Assighment 2 text file got updated last Thursday (Feb 1%%)
* Redownload the zip file to get the latest text file

* How to error handling the age? Check here:
https://classes.engr.oregonstate.edu/engr/winter2023/engrl103-
010/demo/week8/error.cpp

 Midterm Exam date update:
* Previous: Monday of week 6 (2/12)
* Now: Friday of week 6 (2/16)


https://classes.engr.oregonstate.edu/engr/winter2023/engr103-010/demo/week8/error.cpp
https://classes.engr.oregonstate.edu/engr/winter2023/engr103-010/demo/week8/error.cpp

Today’s Topics:

* Intro to OOP

* Accessor vs. Mutator functions
e this keyword (pointer)

e Separate class files



kY
Classes

e We are now moving into the concept of OOP -
Object Oriented Programming

* Classes are very similar to structs
 Structs are collections of data
* Classes can have collections of data and perform operations

—> classes are simply more powerful



Why use a class?

 Structs can’t “do” anything
* Classes can have functionality built in

e Example:mystring.length ()
* mystringisa string%m
* mystring has an internal member variable that tracks the length
e length () is a member function in string class



Class in real world...

* Write a program to model a university

» Use specific classes to represent the real-world objects that are part of a
university
e Students
* Instructors
* Courses

* Each of these classes would have its own member variables (attributes) and
member functions, and they would interact by sending messages to each other
via member functions



Class in real world...

* Our Student class might look like this:

* Member variables (attributes):
* Name
* ID
* GPA
* Current courses
* Completed courses
* Etc.

* Member functions:
* Register for course
e Submit assighment
* Receive grade



Class in real world...

* Our Instructor class might look like this:

* Member variables (attributes):
* Name
e ID
e Office location
* Current courses
* Past courses
e Salary
* etc.

* Member functions:
* Assign grade
e Assign homework
* Assign exam
e etc.



Class in real world...

* Our Course class might look like this:

* Member variables (attributes):
« Title
* CRN Number
* Instructor
* Enrolled students
* Assignments
e Student grades
* etc.

* Member functions:
* Enroll student
* Drop student
* Add assignment
* Add grade
* etc.



Why classes are good?

 Straightforward
* Have a good understanding of these things and how they interact

e Reusable

* All the relevant member variables and member functions in a single package (self-
encapsulated)

10



Today’s Topics:

e Accessor vs. Mutator functions
e this keyword (pointer)
e Separate class files

11



Basic Example

* Suppose that we create a Point class
* |t contains an X value and a Y value

* We can create member functions to move the point, display the value, or perform other
manipulations

* Demo...

12



C++ Access Specifiers

e C++includes the concept of access specifiers (modifiers)

* For now, we will introduce two:

* public: these variables and functions are accessible and modifiable to any part of the
program
* private: can only be accessed or modified by code within the same class

* Why would we want to make something private?

13



Introducing Encapsulation

* Hide the details of your class from others
* Make your class easier to maintain
e Helps avoid broken code

* Consider the Point class
* What if we change int x; 2 int x position;
* That’s a problem for anyone who was using our Point class

14



Example of Broken code

class Point { int main () {
public: Point pl, p2;

pl.x
pl.y =

int x position;

int y position;

void move left (int); The variable

}; names no
longer match

15



How to avoid this problem?

 Make x and y private!
* So they cannot be modified outside of our class

class Point {
private:
int x;
int vy;
public:
void move left (int);

Y

* Demo...

* Wait a second... Once x and y are private, how to we access or modify the state of an
object now?

16



How to Implement Encapsulation?

* Introduce the concept of accessor functions

* Functions that are used to get (or access) values of an object from outside (or inside) the
class

* E.g.implement get x() andget y()

* Now there’s a layer of abstraction between the implementation (your code) and the interface
(how people interact with your code)

* Details such as internal variable names no longer matter

* mutator functions are used to set (or mutate) values of an object from outside
(or inside) the class

* E.g.set x() andset y ()

17



Accessor and Mutator Functions

* Use a consistent naming scheme
* get grade(), get location(), get name ()
* set grade(), set location(), set name ()

Accessors are commonly known as “getters”

Mutators are commonly known as “setters”

Demo...

18



Why are accessors and mutators critical?

* In combination with access specifiers, accessors and mutators allow us to control
access

* Especially useful when you want to have “read-only” member variables
* Users can retrieve the variable using a public “getter” function
* They cannot modify a private value unless you provide a “setter”

19



How secure are access specifiers?

* This is not meant to prevent people from looking at your source code

* A programmer could still open your .cpp file and look at the names of “private”
variables

* The concept of public and private members is enforced by the compiler

You will receive a compile-time error if you try to access unauthorized variables
or functions

20



Classes vs. Structs

* Structs
* Convention: No functionality
* Default public

e Classes
* Functionality
* Default private

* Convention:
 member variables: private
 member functions: public

21



Vocab

 Struct: a type definition without any member functions; collection of data items
of diverse types

Class: a type definition with both member variables and member functions

* Object: instance of the class

Member Variable: variable that belongs to a particular struct/class

Member Function: function that belongs to a particular class

Encapsulation: the details of implementation of a class are hidden from the
programmer who uses the class



Review

* Abstraction vs. Encapsulation

* Abstraction: hide unwanted details while giving out most essential details
* j.e. 10,000 feet view

* Encapsulation: hide the code and data into a single unit

* In short, abstraction hides details at the design level, while encapsulation hides details at
the implementation level

e Classes have member variables and functionality

* Contents are private by default

* Traditionally member variables are private with member functions being public

e Use accessors and mutators to work with private member variables
* get grade (), get location(), get name ()
* set grade(), set location(), set name()

 Classes are typically written with their own header (.h) and implementation
(.cpp) files

23



this Keyword

* Can be used inside any class functions as a pointer to the object with which the
function was called
* “this” always points to the object being operated on

* Using this can be helpful
* Make sure we’re referring to the data members of a class, not to other variables that might

be in scope.
* E.g. when a function parameter has the same name as one of its data members

volid Point::set x(int x) {
this->x = x;
}

« Demo...

24



Const

* To prevent changes to an object being passed, put const the parameter listing
* E.g.bool is greater (const Pointé& a, const Pointé& b);

* |f a function isn’t supposed to change anything, put a const at the end
* e.g.void print () const;
e void Point::print () const {/* definition */}
* Will cause an error if the code in print changes anything

* If using const member variable, it has to be initialized in constructor(s) using
initialization list
e E.g. Point::Point () :z(5){} //where z is defined as a const int

* Demo...

25



	Slide 1: CS 162 Intro to Computer Science II
	Slide 2: Odds and Ends
	Slide 3: Today’s Topics:
	Slide 4: Classes
	Slide 5: Why use a class?
	Slide 6: Class in real world…
	Slide 7: Class in real world…
	Slide 8: Class in real world…
	Slide 9: Class in real world…
	Slide 10: Why classes are good?
	Slide 11: Today’s Topics:
	Slide 12: Basic Example
	Slide 13: C++ Access Specifiers
	Slide 14: Introducing Encapsulation
	Slide 15: Example of Broken code
	Slide 16: How to avoid this problem?
	Slide 17: How to Implement Encapsulation?
	Slide 18: Accessor and Mutator Functions
	Slide 19: Why are accessors and mutators critical?
	Slide 20: How secure are access specifiers?
	Slide 21: Classes vs. Structs
	Slide 22: Vocab
	Slide 23: Review
	Slide 24: this Keyword
	Slide 25: Const

