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Odds and Ends

e Assighnment 2 due Sunday midnight via TEACH

* Assighment 1 demo due today



Today’s Topics:

e Accessor vs. Mutator functions
e this keyword (pointer)
e Separate class files



Basic Example

* Suppose that we create a Point class
* |t contains an X value and a Y value

* We can create member functions to move the point, display the value, or perform other
manipulations

* Demo...



C++ Access Specifiers

e C++includes the concept of access specifiers (modifiers)

* For now, we will introduce two:

* public: these variables and functions are accessible and modifiable to any part of the
program
* private: can only be accessed or modified by code within the same class

* Why would we want to make something private?



Introducing Encapsulation

* Hide the details of your class from others
* Make your class easier to maintain
e Helps avoid broken code

* Consider the Point class
* What if we change int x; 2 int x position;
* That’s a problem for anyone who was using our Point class



Example of Broken code

class Point {
public:
int x position;

int y position;

void move left (int);

Y

int main () {
Point pl, pZ2;
pl.x
pl.y =

The variable
names no
longer match




How to avoid this problem?

 Make x and y private!
* So they cannot be modified outside of our class

class Point {
private:
int x;
int vy;
public:
void move left (int);

Y

* Demo...

* Wait a second... Once x and y are private, how to we access or modify the state of an
object now?



How to Implement Encapsulation?

* Introduce the concept of accessor functions

* Functions that are used to get (or access) values of an object from outside (or inside) the
class

* E.g.implement get x() andget y()

* Now there’s a layer of abstraction between the implementation (your code) and the interface
(how people interact with your code)

* Details such as internal variable names no longer matter

* mutator functions are used to set (or mutate) values of an object from outside
(or inside) the class

* E.g.set x() andset y ()



Accessor and Mutator Functions

* Use a consistent naming scheme
* get grade(), get location(), get name ()
* set grade(), set location(), set name ()

Accessors are commonly known as “getters”

Mutators are commonly known as “setters”

Demo...
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Why are accessors and mutators critical?

* In combination with access specifiers, accessors and mutators allow us to control
access

* Especially useful when you want to have “read-only” member variables
* Users can retrieve the variable using a public “getter” function
* They cannot modify a private value unless you provide a “setter”
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How secure are access specifiers?

* This is not meant to prevent people from looking at your source code

* A programmer could still open your .cpp file and look at the names of “private”
variables

* The concept of public and private members is enforced by the compiler

You will receive a compile-time error if you try to access unauthorized variables
or functions
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Classes vs. Structs

* Structs
* Convention: No functionality
* Default public

e Classes
* Functionality
* Default private

* Convention:
 member variables: private
 member functions: public
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Vocab

 Struct: a type definition without any member functions; collection of data items
of diverse types

Class: a type definition with both member variables and member functions

* Object: instance of the class

Member Variable: variable that belongs to a particular struct/class

Member Function: function that belongs to a particular class

Encapsulation: the details of implementation of a class are hidden from the
programmer who uses the class



Review

* Abstraction vs. Encapsulation

* Abstraction: hide unwanted details while giving out most essential details
* j.e. 10,000 feet view

* Encapsulation: hide the code and data into a single unit

* In short, abstraction hides details at the design level, while encapsulation hides details at
the implementation level

e Classes have member variables and functionality

* Contents are private by default

* Traditionally member variables are private with member functions being public

e Use accessors and mutators to work with private member variables
* get grade (), get location(), get name ()
* set grade(), set location(), set name()

 Classes are typically written with their own header (.h) and implementation
(.cpp) files
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this Keyword

* Can be used inside any class functions as a pointer to the object with which the
function was called
* “this” always points to the object being operated on

* Using this can be helpful
* Make sure we’re referring to the data members of a class, not to other variables that might
be in scope.
* E.g. when a function parameter has the same name as one of its data members

void Point::set x(int[R) {
this->x = @

}
« Demo...
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Const

* To prevent changes to an object being passed, put const the parameter listing
* E.g.bool is greater (const Pointé& a, const Pointé& b);

* |f a function isn’t supposed to change anything, put a const at the end
* e.g.void print () const;
e void Point::print () const {/* definition */}
* Will cause an error if the code in print changes anything

* If using const member variable, it has to be initialized in constructor(s) using
initialization list
e E.g. Point::Point () :z(5){} //where z is defined as a const int

* Demo...
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Today’s Topics:

 Constructors
e Default vs. non-default
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Implementing a Class

* Let’s use what we’ve learned so far to create a Course class
* Create header and implementation files
* Basic properties include:
¢ course name
* roster
e current enrollment
* instructor

* Demo...
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Implementing a class

* Now our Course class ...
* Has a name
* Contains roster information with student names
* Tracks number of enrolled students

* New question... how do we initialize the member variables?
* Use mutators
* Umm... calling each individual mutator function is cumbersome
* Fortunately, we have a better way!
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Introducing Constructor

Constructor — a specially defined function
Automatically called when the object is created

Sets up (initializes) the object with appropriate values
* Member variable values
* Allocating memory for member variables
* *QOpening a file to read from or write to

If a constructor is not provided by the programmer, one will be automatically
generated (implicitly) but will not initialize any values
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More details on Constructors

 Must have the same name as the class
* Not allowed to return anything

* May have parameters

* If no parameters provided, referred to as default constructor

 |f parameters are provided, referred to as non-default constructor (a.k.a. parameterized
constructor).

* It can be defined in a couple ways:
* Option 1: Use assighment statements

this->x = -1; this->x = a;
this->y = -1; this->y = b;

}
}
* Option 2: Use initialization list
Point::Point () : x(-1), v (-1) {}
Point::Point (int a, int b) : x(a), vy(b) {}
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More details on Constructors

* Each class may have at most one default constructor, and any number of non-
default ones

If you define any non-default constructors for a class, you must define a default
one

If constructors are explicitly defined for a class, the compiler will not generate
one for you

* Typical compile time error: a class has non-default constructors, but no default one. Create
objects using default constructor 2 NoNo!!!

Can’t be called using the dot operator

Can be called after the object is created
next point = Poilnt (3,3);
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Demo...
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