CS 162
Intro to Computer Science |l

Lecture 12
Accessors vs. Mutators
“this” keyword, const

Constructors
2/9/24

) Oregon State



Odds and Ends

e Assighnment 2 due Sunday midnight via TEACH

* Assighment 1 demo due today



Today’s Topics:

e Accessor vs. Mutator functions
e this keyword (pointer)
e Separate class files



Basic Example

* Suppose that we create a Point class
* |t contains an X value and a Y value

* We can create member functions to move the point, display the value, or perform other
manipulations

* Demo...



C++ Access Specifiers

e C++includes the concept of access specifiers (modifiers)

* For now, we will introduce two:

* public: these variables and functions are accessible and modifiable to any part of the
program
* private: can only be accessed or modified by code within the same class

* Why would we want to make something private?



Introducing Encapsulation

* Hide the details of your class from others
* Make your class easier to maintain
e Helps avoid broken code

* Consider the Point class
* What if we change int x; 2 int x position;
* That’s a problem for anyone who was using our Point class



Example of Broken code

class Point {
public:
int x position;

int y position;

void move left (int);

Y

int main () {
Point pl, pZ2;
pl.x
pl.y =

The variable
names no
longer match




How to avoid this problem?

 Make x and y private!
* So they cannot be modified outside of our class

class Point {
private:
int x;
int vy;
public:
void move left (int);

Y

* Demo...

* Wait a second... Once x and y are private, how to we access or modify the state of an
object now?



How to Implement Encapsulation?

* Introduce the concept of accessor functions

* Functions that are used to get (or access) values of an object from outside (or inside) the
class

* E.g.implement get x() andget y()

* Now there’s a layer of abstraction between the implementation (your code) and the interface
(how people interact with your code)

* Details such as internal variable names no longer matter

* mutator functions are used to set (or mutate) values of an object from outside
(or inside) the class

* E.g.set x() andset y ()



Accessor and Mutator Functions

* Use a consistent naming scheme
* get grade(), get location(), get name ()
* set grade(), set location(), set name ()

Accessors are commonly known as “getters”

Mutators are commonly known as “setters”

Demo...

10



Why are accessors and mutators critical?

* In combination with access specifiers, accessors and mutators allow us to control
access

* Especially useful when you want to have “read-only” member variables
* Users can retrieve the variable using a public “getter” function
* They cannot modify a private value unless you provide a “setter”

11



How secure are access specifiers?

* This is not meant to prevent people from looking at your source code

* A programmer could still open your .cpp file and look at the names of “private”
variables

* The concept of public and private members is enforced by the compiler

You will receive a compile-time error if you try to access unauthorized variables
or functions

12



Classes vs. Structs

* Structs
* Convention: No functionality
* Default public

e Classes
* Functionality
* Default private

* Convention:
 member variables: private
 member functions: public

13



Vocab

 Struct: a type definition without any member functions; collection of data items
of diverse types

Class: a type definition with both member variables and member functions

* Object: instance of the class

Member Variable: variable that belongs to a particular struct/class

Member Function: function that belongs to a particular class

Encapsulation: the details of implementation of a class are hidden from the
programmer who uses the class



Review

* Abstraction vs. Encapsulation

* Abstraction: hide unwanted details while giving out most essential details
* j.e. 10,000 feet view

* Encapsulation: hide the code and data into a single unit

* In short, abstraction hides details at the design level, while encapsulation hides details at
the implementation level

e Classes have member variables and functionality

* Contents are private by default

* Traditionally member variables are private with member functions being public

e Use accessors and mutators to work with private member variables
* get grade (), get location(), get name ()
* set grade(), set location(), set name()

 Classes are typically written with their own header (.h) and implementation
(.cpp) files

15



this Keyword

* Can be used inside any class functions as a pointer to the object with which the
function was called
* “this” always points to the object being operated on

* Using this can be helpful
* Make sure we’re referring to the data members of a class, not to other variables that might
be in scope.
* E.g. when a function parameter has the same name as one of its data members

void Point::set x(int[R) {
this->x = @

}
« Demo...

16



Const

* To prevent changes to an object being passed, put const the parameter listing
* E.g.bool is greater (const Pointé& a, const Pointé& b);

* |f a function isn’t supposed to change anything, put a const at the end
* e.g.void print () const;
e void Point::print () const {/* definition */}
* Will cause an error if the code in print changes anything

* If using const member variable, it has to be initialized in constructor(s) using
initialization list
e E.g. Point::Point () :z(5){} //where z is defined as a const int

* Demo...

17



Today’s Topics:

 Constructors
e Default vs. non-default

18



Implementing a Class

* Let’s use what we’ve learned so far to create a Course class
* Create header and implementation files
* Basic properties include:
¢ course name
* roster
e current enrollment
* instructor

* Demo...

19



Implementing a class

* Now our Course class ...
* Has a name
* Contains roster information with student names
* Tracks number of enrolled students

* New question... how do we initialize the member variables?
* Use mutators
* Umm... calling each individual mutator function is cumbersome
* Fortunately, we have a better way!

20



Introducing Constructor

Constructor — a specially defined function
Automatically called when the object is created

Sets up (initializes) the object with appropriate values
* Member variable values
* Allocating memory for member variables
* *QOpening a file to read from or write to

If a constructor is not provided by the programmer, one will be automatically
generated (implicitly) but will not initialize any values

21



More details on Constructors

 Must have the same name as the class
* Not allowed to return anything

* May have parameters

* If no parameters provided, referred to as default constructor

 |f parameters are provided, referred to as non-default constructor (a.k.a. parameterized
constructor).

* It can be defined in a couple ways:
* Option 1: Use assighment statements

this->x = -1; this->x = a;
this->y = -1; this->y = b;

}
}
* Option 2: Use initialization list
Point::Point () : x(-1), v (-1) {}
Point::Point (int a, int b) : x(a), vy(b) {}

22



More details on Constructors

* Each class may have at most one default constructor, and any number of non-
default ones

If you define any non-default constructors for a class, you must define a default
one

If constructors are explicitly defined for a class, the compiler will not generate
one for you

* Typical compile time error: a class has non-default constructors, but no default one. Create
objects using default constructor 2 NoNo!!!

Can’t be called using the dot operator

Can be called after the object is created
next point = Poilnt (3,3);

23



Demo...

24



	Slide 1: CS 162 Intro to Computer Science II
	Slide 2: Odds and Ends
	Slide 3: Today’s Topics:
	Slide 4: Basic Example
	Slide 5: C++ Access Specifiers
	Slide 6: Introducing Encapsulation
	Slide 7: Example of Broken code
	Slide 8: How to avoid this problem?
	Slide 9: How to Implement Encapsulation?
	Slide 10: Accessor and Mutator Functions
	Slide 11: Why are accessors and mutators critical?
	Slide 12: How secure are access specifiers?
	Slide 13: Classes vs. Structs
	Slide 14: Vocab
	Slide 15: Review
	Slide 16: this Keyword
	Slide 17: Const
	Slide 18: Today’s Topics:
	Slide 19: Implementing a Class
	Slide 20: Implementing a class
	Slide 21: Introducing Constructor
	Slide 22: More details on Constructors 
	Slide 23: More details on Constructors 
	Slide 24: Demo…

