
CS 162
Intro to Computer Science II

Lecture 12

Accessors vs. Mutators

“this” keyword, const

Constructors

2/9/24

1

Odds and Ends

• Assignment 2 due Sunday midnight via TEACH

• Assignment 1 demo due today

2

Today’s Topics:

• Accessor vs. Mutator functions

• this keyword (pointer)

• Separate class files

3

Basic Example

• Suppose that we create a Point class
• It contains an X value and a Y value

• We can create member functions to move the point, display the value, or perform other
manipulations

• Demo…

4

C++ Access Specifiers

• C++ includes the concept of access specifiers (modifiers)

• For now, we will introduce two:
• public: these variables and functions are accessible and modifiable to any part of the

program

• private: can only be accessed or modified by code within the same class

• Why would we want to make something private?

5

Introducing Encapsulation

• Hide the details of your class from others
• Make your class easier to maintain

• Helps avoid broken code

• Consider the Point class
• What if we change int x;→ int x_position;

• That’s a problem for anyone who was using our Point class

6

Example of Broken code
class Point {

public:

int x_position;

int y_position;

void move_left(int);

};

7

int main () {

 Point p1, p2;

 p1.x = 8;

 p1.y = 4;

}

The variable
names no

longer match

How to avoid this problem?

• Make x and y private!
• So they cannot be modified outside of our class

class Point {

private:

int x;

int y;

public:

void move_left(int);

};

• Demo…

• Wait a second… Once x and y are private, how to we access or modify the state of an
object now?

8

How to Implement Encapsulation?

• Introduce the concept of accessor functions
• Functions that are used to get (or access) values of an object from outside (or inside) the

class

• E.g. implement get_x() and get_y()

• Now there’s a layer of abstraction between the implementation (your code) and the interface
(how people interact with your code)

• Details such as internal variable names no longer matter

• mutator functions are used to set (or mutate) values of an object from outside
(or inside) the class
• E.g. set_x() and set_y()

9

Accessor and Mutator Functions

• Use a consistent naming scheme
• get_grade(), get_location(), get_name()

• set_grade(), set_location(), set_name()

• Accessors are commonly known as “getters”

• Mutators are commonly known as “setters”

• Demo…

10

Why are accessors and mutators critical?

• In combination with access specifiers, accessors and mutators allow us to control
access

• Especially useful when you want to have “read-only” member variables
• Users can retrieve the variable using a public “getter” function

• They cannot modify a private value unless you provide a “setter”

11

How secure are access specifiers?

• This is not meant to prevent people from looking at your source code

• A programmer could still open your .cpp file and look at the names of “private”
variables

• The concept of public and private members is enforced by the compiler

• You will receive a compile-time error if you try to access unauthorized variables
or functions

12

Classes vs. Structs

• Structs
• Convention: No functionality

• Default public

• Classes
• Functionality

• Default private

• Convention:
• member variables: private

• member functions: public

13

Vocab

• Struct: a type definition without any member functions; collection of data items
of diverse types

• Class: a type definition with both member variables and member functions

• Object: instance of the class

• Member Variable: variable that belongs to a particular struct/class

• Member Function: function that belongs to a particular class

• Encapsulation: the details of implementation of a class are hidden from the
programmer who uses the class

14

Review

• Abstraction vs. Encapsulation
• Abstraction: hide unwanted details while giving out most essential details

• i.e. 10,000 feet view

• Encapsulation: hide the code and data into a single unit
• In short, abstraction hides details at the design level, while encapsulation hides details at

the implementation level

• Classes have member variables and functionality

• Contents are private by default
• Traditionally member variables are private with member functions being public
• Use accessors and mutators to work with private member variables

• get_grade(), get_location(), get_name()

• set_grade(), set_location(), set_name()

• Classes are typically written with their own header (.h) and implementation
(.cpp) files

15

this Keyword

• Can be used inside any class functions as a pointer to the object with which the
function was called

• “this” always points to the object being operated on

• Using this can be helpful
• Make sure we’re referring to the data members of a class, not to other variables that might

be in scope.

• E.g. when a function parameter has the same name as one of its data members

void Point::set_x(int x){

this->x = x;

}

• Demo…

16

Const

• To prevent changes to an object being passed, put const the parameter listing
• E.g. bool is_greater (const Point& a, const Point& b);

• If a function isn’t supposed to change anything, put a const at the end
• e.g. void print() const;

• void Point::print() const {/* definition */}

• Will cause an error if the code in print changes anything

• If using const member variable, it has to be initialized in constructor(s) using
initialization list
• E.g. Point::Point():z(5){} //where z is defined as a const int

• Demo…

17

Today’s Topics:

• Constructors
• Default vs. non-default

18

Implementing a Class

• Let’s use what we’ve learned so far to create a Course class
• Create header and implementation files

• Basic properties include:
• course name

• roster

• current enrollment

• instructor

• Demo…

19

Implementing a class

• Now our Course class …
• Has a name

• Contains roster information with student names

• Tracks number of enrolled students

• New question… how do we initialize the member variables?
• Use mutators

• Umm… calling each individual mutator function is cumbersome

• Fortunately, we have a better way!

20

Introducing Constructor

• Constructor – a specially defined function

• Automatically called when the object is created

• Sets up (initializes) the object with appropriate values
• Member variable values

• Allocating memory for member variables

• *Opening a file to read from or write to

• If a constructor is not provided by the programmer, one will be automatically
generated (implicitly) but will not initialize any values

21

More details on Constructors

• Must have the same name as the class

• Not allowed to return anything

• May have parameters
• If no parameters provided, referred to as default constructor
• If parameters are provided, referred to as non-default constructor (a.k.a. parameterized

constructor).
• It can be defined in a couple ways:

• Option 1: Use assignment statements

Point::Point (){

this->x = -1;

this->y = -1;

}

• Option 2: Use initialization list

Point::Point() : x(-1), y(-1) {}

Point::Point(int a, int b) : x(a), y(b) {}

22

Point::Point (int a, int b){

 this->x = a;

 this->y = b;

}

More details on Constructors

• Each class may have at most one default constructor, and any number of non-
default ones

• If you define any non-default constructors for a class, you must define a default
one

• If constructors are explicitly defined for a class, the compiler will not generate
one for you
• Typical compile time error: a class has non-default constructors, but no default one. Create

objects using default constructor → NoNo!!!

• Can’t be called using the dot operator

• Can be called after the object is created
next_point = Point (3,3);

23

Demo…

24

	Slide 1: CS 162 Intro to Computer Science II
	Slide 2: Odds and Ends
	Slide 3: Today’s Topics:
	Slide 4: Basic Example
	Slide 5: C++ Access Specifiers
	Slide 6: Introducing Encapsulation
	Slide 7: Example of Broken code
	Slide 8: How to avoid this problem?
	Slide 9: How to Implement Encapsulation?
	Slide 10: Accessor and Mutator Functions
	Slide 11: Why are accessors and mutators critical?
	Slide 12: How secure are access specifiers?
	Slide 13: Classes vs. Structs
	Slide 14: Vocab
	Slide 15: Review
	Slide 16: this Keyword
	Slide 17: Const
	Slide 18: Today’s Topics:
	Slide 19: Implementing a Class
	Slide 20: Implementing a class
	Slide 21: Introducing Constructor
	Slide 22: More details on Constructors
	Slide 23: More details on Constructors
	Slide 24: Demo…

