
CS 162
Intro to Computer Science II

Lecture 13

Constructors

Shallow vs. Deep Copy

2/12/24

1



Odds and Ends

2

• Assignment 3 posted

• Lab 6 posted

• Design 3 will be posted later today!

• Midterm Exam: Friday this week during lecture time



Review

• Abstraction vs. Encapsulation
• Abstraction: hide unwanted details while giving out most essential details

• i.e. 10,000 feet view

• Encapsulation: hide the code and data into a single unit
• In short, abstraction hides details at the design level, while encapsulation hides details at 

the implementation level

• Classes have member variables and functionality

• Contents are private by default
• Traditionally member variables are private with member functions being public
• Use accessors and mutators to work with private member variables

• get_grade(), get_location(), get_name()

• set_grade(), set_location(), set_name()

• Classes are typically written with their own header (.h) and implementation 
(.cpp) files

3



this Keyword

• Can be used inside any class functions as a pointer to the object with which the 
function was called

• “this” always points to the object being operated on

• Using this can be helpful
• Make sure we’re referring to the data members of a class, not to other variables that might 

be in scope. 

• E.g. when a function parameter has the same name as one of its data members 

void Point::set_x(int x){

this->x = x;

}

• Demo…

4



Const

• To prevent changes to an object being passed, put const the parameter listing
• E.g. bool is_greater (const Point& a, const Point& b);

• If a function isn’t supposed to change anything, put a const at the end
• e.g. void print() const;

• void Point::print() const {/* definition */}

• Will cause an error if the code in print changes anything

• If using const member variable, it has to be initialized in constructor(s) using 
initialization list
• E.g. Point::Point():z(5){} //where z is defined as a const int

• Demo…

5



Today’s Topics:

• Constructors
• Default vs. non-default

6



Implementing a Class

• Let’s use what we’ve learned so far to create a Course class
• Create header and implementation files

• Basic properties include:
• course name

• roster

• current enrollment

• instructor 

• Demo…

7



Implementing a class

• Now our Course class …
• Has a name

• Contains roster information with student names

• Tracks number of enrolled students 

• New question… how do we initialize the member variables? 
• Use mutators

• Umm… calling each individual mutator function is cumbersome 

• Fortunately, we have a better way!

8



Introducing Constructor

• Constructor – a specially defined function

• Automatically called when the object is created

• Sets up (initializes) the object with appropriate values
• Member variable values

• Allocating memory for member variables

• *Opening a file to read from or write to

• If a constructor is not provided by the programmer, one will be automatically
generated (implicitly) but will not initialize any values

9



More details on Constructors 

• Must have the same name as the class

• Not allowed to return anything

• May have parameters
• If no parameters provided, referred to as default constructor

• If parameters are provided, referred to as non-default constructor (a.k.a. parameterized constructor). 

• It can be defined in a couple ways:
• Option 1: Use assignment statements

Point::Point (){

this->x = -1; 

this->y = -1;

}

• Option 2: Use initialization list

Point::Point() : x(-1), y(-1) {}

Point::Point(int a, int b) : x(a), y(b) {}

• If using const member variable, it has to be initialized in constructor(s) using initialization list
• E.g. Point::Point():z(5){} //where z is defined as a const int

10

Point::Point (int a, int b){

 this->x = a; 

 this->y = b;

}



More details on Constructors 

• Each class may have at most one default constructor, and any number of non-
default ones

• If you define any non-default constructors for a class, a default one is likely 
needed

• If constructors are explicitly defined for a class, the compiler will not generate 
one for you
• Typical compile time error: a class has non-default constructors, but no default one. Create 

objects using default constructor → NoNo!!!

• Can’t be called using the dot operator

• Can be called after the object is created
next_point = Point (3,3);

11



Today’s Topics:

• Shallow vs. Deep copy

• Begin Big three

12



Destructor 

• Special function which is called automatically when the object is destroyed
• Happens when a statically allocated object goes out of scope or when a dynamically 

allocated object is freed with delete

• Think of this as the “opposite” of the constructor 

• Generally used to clean up dynamic memory usage, file I/O handles, database 
connections, etc.

• To create a destructor, declare a public class function with no return type, with 
the same name as the class, preceded by a tilde (~): 
• E.g. ~Point();

• Demo…

13



Shallow Copy vs. Deep Copy

• Shallow:
• A.k.a.: member-wise copy

• Copy the contents of member variables from one object to another

• Default behavior when objects are copied or assigned

14

Objetct1

var1

var2

var3

Objetct2

var1

var2

var3



Shallow Copy vs. Deep Copy

• Shallow:
• What if the object has dynamic memory allocated?

• This could be problematic as if we make any changes to the array in object 1, object 2 will 
be affected as well…

15

Objetct1

var1

var2

var3

Objetct2

var1

var2

var3



Shallow Copy vs. Deep Copy

• Deep:
• Copy what each member variable is pointing to so that you get a separate but identical copy

• Has to be programmer-specified 

16

Objetct1

var1

var2

var3

Objetct2

var1

var2

var3



Assignment Operator (=) Overload

• Predefined assignment operator returns a reference
• Allows us to chain assignments together: a = b = c

• First set “b = c” and return a reference to b. Then set “a = b”

• Need to make sure the assignment operator returns something of the same type as its left hand 
side

• Overloading assignment operator
• Must be a member of the class

17



Copy Constructor

• Constructor that has one parameter that is of the same type as the class
• Has to accept reference as parameter (normally const)

• Allows for distinct copies, changes to one does not impact the other 

• Called automatically in three cases:
• When a class object is being declared and initialized by another object of same type

• Whenever an argument of the class type is “plugged in” for a call by value parameter

• When a function returns a value of the class type 

18



Destructor

• Delete the object

• Will be automatically created if one is not supplied
• Will not handle dynamic memory

• ~Class_name();//no return type, no parameters, only one allowed

• Called when the object goes out of scope
• When the function ends

• When the program ends

• A block containing local variables ends

• A delete operator is called 

19



The Big Three

• If you implement either a Destructor, a Copy Constructor, or an Overloaded 
Assignment Operator, you should ensure that all 3 are defined

• If you needed one, you probably need all of them

• This rule of thumb goes by several names:
• The Big Three

• The Rule of Three

• The Law of The Big Three 

• *C++11 has an expanded version: The Big 5 
• We won’t cover this yet

20



Big Three Activity 

21

Function Prototype Job When is it called Default Behavior if not 
defined?

Constructor ClassName();
ClassName(w/ params)

Build the 
object

Default is called when object is 
declared with no parameters 
and no “=“ sign. Nondefault is 
called if parameters are given

The compiler will provide 
a default one. It will 
initialize all variables with 
garbage values, will not 
set up pointers

Copy 
Constructor

Assignment 
Operator 
Overload

Destructor



Passing Objects

• Can be passed the same way as any other variable

• Traditionally pass by reference 
• Generally more efficient

• Pass by value makes two copies → requires the copy constructor at least once

• Pass by reference only uses the one variable, no copies

• Can be problematic since changes to references persist

22



Class Composition

• Class Composition – a fundamental concept in OOP
• Describes a class that “has” one or more objects of other classes. 

• Allows to model a “has-a” relationship between objects. 

• i.e. In assignment 3, Shop “has a” Menu, and a Menu “has a” Coffee

• (Well, in fact, a Menu has an array of Coffee objects, but you get the idea ☺)

23


	Slide 1: CS 162 Intro to Computer Science II
	Slide 2: Odds and Ends
	Slide 3: Review
	Slide 4: this Keyword
	Slide 5: Const
	Slide 6: Today’s Topics:
	Slide 7: Implementing a Class
	Slide 8: Implementing a class
	Slide 9: Introducing Constructor
	Slide 10: More details on Constructors 
	Slide 11: More details on Constructors 
	Slide 12: Today’s Topics:
	Slide 13: Destructor 
	Slide 14: Shallow Copy vs. Deep Copy
	Slide 15: Shallow Copy vs. Deep Copy
	Slide 16: Shallow Copy vs. Deep Copy
	Slide 17: Assignment Operator (=) Overload
	Slide 18: Copy Constructor
	Slide 19: Destructor
	Slide 20: The Big Three
	Slide 21: Big Three Activity 
	Slide 22: Passing Objects
	Slide 23: Class Composition

