
CS 162
Intro to Computer Science II

Lecture 14

Shallow vs. deep copy

Big 3

2/19/24

1

Odds and Ends

2

• Sign up for assignment 2 demo ASAP!

• Lab 7 posted

• Assignment 3 rubrics posted

• Design 3 (ex. + doc) + Quiz 3 past due

Today’s topics

• Midterm Report

• Shallow vs. Deep Copy

• Big 3 Implementation

3

Shallow Copy vs. Deep Copy

• Shallow:
• A.k.a.: member-wise copy

• Copy the contents of member variables from one object to another

• Default behavior when objects are copied or assigned

4

Objetct1

var1

var2

var3

Objetct2

var1

var2

var3

Shallow Copy vs. Deep Copy

• Shallow:
• What if the object has dynamic memory allocated?

• This could be problematic as if we make any changes to the array in object 1, object 2 will
be affected as well…

5

Objetct1

var1

var2

var3

Objetct2

var1

var2

var3

Shallow Copy vs. Deep Copy

• Deep:
• Copy what each member variable is pointing to so that you get a separate but identical copy

• Has to be programmer-specified

6

Objetct1

var1

var2

var3

Objetct2

var1

var2

var3

7

Assignment Operator (=) Overload

• Predefined assignment operator returns a reference
• Allows us to chain assignments together: a = b = c

• First set “b = c” and return a reference to b. Then set “a = b”

• Need to make sure the assignment operator returns something of the same type as its left hand
side

• Overloading assignment operator
• Must be a member of the class

8

Assignment Operator (=) Overload

• Ex.:

Course& Course::operator=(const Course& obj) {//pay attention to the return type
this->title = obj.title; //for non-dyn. Memory, shallow copy

this->enroll = obj.enroll;

this->instructor = obj.instructor;

if (this->roster != nullptr) //if the ptr has memory allocated

delete [] this->roster; //free it

this->roster = new string [this->enroll]; //deep copy

for (int i = 0; i < this->enroll; i++)

this->roster[i] = obj.roster[i];

return *this; //return the calling obj

}

9

Copy Constructor

• Constructor that has one parameter that is of the same type as the class
• Has to accept reference as parameter (normally const)

• Allows for distinct copies, changes to one does not impact the other

• Called automatically in three cases:
• When a class object is being declared and initialized by another object of same type

• Whenever an argument of the class type is “plugged in” for a call by value parameter

• When a function returns a value of the class type

10

Copy Constructor

• Ex.:

Course::Course(const Course& obj) { //pay attention to the parameter
this->title = obj.title; //for non-dyn. Memory, shallow copy

this->enroll = obj.enroll;

this->instructor = obj.instructor;

this->roster = new string [this->enroll]; //deep copy

for (int i = 0; i < this->enroll; i++)

this->roster[i] = obj.roster[i];

//no return

}

11

Destructor

• Delete the object

• Will be automatically created if one is not supplied
• Will not handle dynamic memory

• ~Class_name();//no return type, no parameters, only one allowed

• Called when the object goes out of scope
• When the function ends

• When the program ends

• A block containing local variables ends

• A delete operator is called

12

Destructor

• Ex.:

Course::~Course() {

if (this->roster != nullptr){ //if the ptr has memory allocated

delete [] this->roster; //free it

this->roster = nullptr;

}

}

13

The Big Three

• If you implement either a Destructor, a Copy Constructor, or an Overloaded
Assignment Operator, you should ensure that all 3 are defined

• If you needed one, you probably need all of them

• This rule of thumb goes by several names:
• The Big Three

• The Rule of Three

• The Law of The Big Three

• *C++11 has an expanded version: The Big 5
• We won’t cover this yet

14

Big Three Activity

15

Function Prototype Job When is it called Default Behavior if not
defined?

Constructor ClassName();
ClassName(w/ params)

Build the
object

Default is called when object is
declared with no parameters
and no “=“ sign. Nondefault is
called if parameters are given

The compiler will provide
a default one. It will
initialize all variables with
garbage values, will not
set up pointers

Copy
Constructor

Assignment
Operator
Overload

Destructor

Asm3 Hints:

• Which class needs Big 3?

• Where to implement the “add a flight” functionality?

• Where to implement the “remove a flight” functionality?

• Is it a good practice to access Flight internals from the Manager class?
• i.e., get_airports()[0].get_flight()[0].get_flight_number()?
• NO!!! THIS VIOLATES THE RULE OF ENCAPSULATION!!!!

• Game flow?

• What’s inside your main()? driver.cpp?

• Frequently check memory leaks!!!

16

	Slide 1: CS 162 Intro to Computer Science II
	Slide 2: Odds and Ends
	Slide 3: Today’s topics
	Slide 4: Shallow Copy vs. Deep Copy
	Slide 5: Shallow Copy vs. Deep Copy
	Slide 6: Shallow Copy vs. Deep Copy
	Slide 7
	Slide 8: Assignment Operator (=) Overload
	Slide 9: Assignment Operator (=) Overload
	Slide 10: Copy Constructor
	Slide 11: Copy Constructor
	Slide 12: Destructor
	Slide 13: Destructor
	Slide 14: The Big Three
	Slide 15: Big Three Activity
	Slide 16: Asm3 Hints:

