
CS 162
Intro to Computer Science II

Lecture 16

Inheritance

2/23/24

1

Odds and Ends

2

• Assignment 3 due Sunday midnight

Today’s topics

• Inheritance

3

Big Three Activity

4

Function Prototype Job When is it called Default Behavior if not
defined?

Constructor ClassName();
ClassName(w/ params)

Build the
object

Default is called when object is
declared with no parameters
and no “=“ sign. Nondefault is
called if parameters are given

The compiler will provide
a default one. It will
initialize all variables with
garbage values, will not
set up pointers

Copy
Constructor

Assignment
Operator
Overload

Destructor

Big Three Activity

5

Function Prototype Job When is it called Default Behavior if not
defined?

Constructor ClassName();
ClassName(w/ params)

Build the
object

Default is called when object is
declared with no parameters
and no “=“ sign. Nondefault is
called if parameters are given

The compiler will provide
a default one. It will
initialize all variables with
garbage values, will not
set up pointers

Copy
Constructor

ClassName(const
ClassName &);

Copies the
contents of
the passed in
object to the
destination
object

1. Pass by value
2. Return value
3. When initializing an object

with this constructor

Shallow copy, will only
copy the values stored in
each variable

Big Three Activity

6

Function Prototype Job When is it called Default Behavior if not
defined?

Assignment
Operator
Overload

ClassName &
operator=(const
ClassName &);

Copies the
contents of
the right
operand to
the left
operand

When setting an object of the
same class type to another
object of the same class type

Shallow copy, will only
copy the values stored in
each variable

Destructor ~ClassName(); Destroys the
object

Any time an object goes out of
scope
1. When a function ends
2. When the program ends
3. A block containing a local

variable ends
4. A delete operator is called

Will delete anything on
the stack

Asm3 Hints:

• Which class needs Big 3?

• Where to implement the “add a flight” functionality?

• Where to implement the “remove a flight” functionality?

• Is it a good practice to access Flight internals from the Manager class?
• i.e., get_airports()[0].get_flight()[0].get_flight_number()?
• NO!!! THIS VIOLATES THE RULE OF ENCAPSULATION!!!!

• Game flow?

• What’s inside your main()? driver.cpp?

• Frequently check memory leaks!!!

7

Introduction to Inheritance

• Suppose that we implement two C++ classes with the following member
variables:
• Student:

• ID

• Email address

• Phone number

• Major

• GPA

• Instructor
• ID

• Email address

• Phone number

• Office

• Office hours

• Salary

8

Basic of Inheritance

• The process by which a new class is created from another class

• Derived (Child) class: Classes that inherit properties

• Base (Parent) class: more general class which derived class are created from

• Examples:
• Parent: Animal Child: Dog, Cat…

• Parent: Fruit Child: Apple, Orange…

• Parent: Shape Child: Triangle, Rectangle, Circle …

9

Why is Inheritance useful?

• Avoid redefining the information from the base class in our derived class.
• If a Student and an Instructor are both derived class, we don’t need to write the same

code twice

• Define a Parent class, Person, that would hold any redundant information

• Not only saves work
• If we update or modify the base class, all derived classes will automatically inherit the

changes!

10

Let’s draw the hierarchy
• Student:

• ID

• Email address

• Phone number

• Major

• GPA

• Instructor
• ID

• Email address

• Phone number

• Office

• Office hours

• Salary

11

Person

ID

Email
address

Phone
number

Student

Major

GPA

Instructor

Office

Office
hours

Salary

Base Class (Parent)

Derived Class (Child)

Derived Class (Child)

Inheritance (cont…)
• Inheritance is not limited to a single level

• Let’s add an Employee class to the hierarchy

12

Person

ID
Email

address
Phone

number

Student

Major

GPA

Employee

Office

Staff

Hourly
Rate

Instructor

Office
hours

Salary

Inheritance vs. Composition

• Composition
• Course “has a” Student

13

• Inheritance

– Monkey “is a” Animal

Course

Student

Animal

Monkey

Define Inheritance
• Parent class declared and defined as normal

• Child class:
• class Derived:public Base {};

• i.e. class Monkey : public Animal {};

• List only member variables you want to add, not what is inherited

• Only redeclare inherited member functions if you want to redefine them
• When an inherited member function definition is changed in the derived class

• Derived classes can be used anywhere the base class would be used, but not the
other way around
• i.e. anywhere you use the Animal, you can use the Monkey, but not everywhere you use the

Monkey can you use the Animal

14

These things are NOT Inherited:

• Base class constructor
• Though it can be called from the derived class

• Child::Child():Parent(){}

• Base is called first to initialize all of the base member variables

• If base constructor is not specified, the base default constructor will be used

• Copy Constructor

• Assignment Operator Overload

• Destructor

15

Interface (.h)

• Declare the Parent as normal

• The Child:

class Child : public Parent {

private:

//any members which are unique to the child

public:

Child(); //default constructor

//other members including redefined functions from Parent

};

16

Implementation (.cpp)

• Parent class defined as normal

• Child:

Child::Child():Parent() {//child makes call to parent constructor first

//initialize the member variables that are unique to child

}

//define all other member functions as normal

//redefining of parent functions follows the normal way of defining

functions

17

Inheritance with the Big 3
• Recall: Big 3 are needed whenever there is dynamic memory or pointers, they are not inherited from the parent. To use in

child successfully, they must be defined correctly in parent.

Child& Child::operator = (const Child& other) {

Parent::operator = (other); //invoke parent class AOO

//continue with things unique to child

}

Child::Child(const Child& copy):Parent(copy) {

//continue with things unique to child

}

Child::~Child() {

//define as normal, parent’s will be automatically called after the child’s completes

//destructors go in the reverse of constructors calls

}

18

Inherited but Restricted

• Private member variables are inherited but cannot be accessed by name
• Need to use accessor and mutator functions

• Private member functions are inherited but cannot be accessed by the derived
class

• Recalled that we’ve seen two access specifiers:
• private, public

• Now the 3rd one: protected
• Allows for the derived class to be able to access things directly by name

• Every other class would view them as private

19

Public vs. Private vs. Protected

• Anything public in the parent is public to the child

• Anything private in the parent is private to the child
• This means the child cannot use private parent functions

• This means the child cannot use private member variables of parent by name, have to use
the inherited accessor and mutator functions

• Anything protected in the parent is public to the child but private to everyone
else
• This means the child can use protected member variables and functions of parent by name

20

Creation

• Base class Object:
• i.e. Creating an Animal object:
Animal a1;

• Animal constructor is invoked,
memory allocated for the base
class

21

• Child class Object:

– i.e. Creating an Monkey
object: Monkey m1;

– First, the Animal

constructor is invoked,
then the Monkey

constructor invoked

– memory allocated with
enough space for the base
class (Animal) and the
derived class (Monkey)

Deletion

• Base Class Object:
• i.e. Delete an Animal object: a1;

• Animal destructor is invoked,
memory deallocated for the base
class

22

• Child Class Object:

– i.e. Deleting an Monkey
object: m1;

– First, the Monkey destructor is
invoked, then the Animal

destructor invoked

– Note: Deletion has reverse
order of creation

More on Access Control

• Protected
• protected in the parent is public to the child but private to everyone else

• Using protected access is a double-edged sword:
• It can make it easier to implement classes by avoiding writing a public interface for some

members.

• But, it makes your derived classes vulnerable to changes to the protected members of the
base class
• Using a public interface can insulate you from the need to make changes in the derived classes.

23

More on Access Control

• Recall:
• class Monkey : public Animal { ... };

• This means that we used public inheritance.

• Use public inheritance to implement a true “is-a” relationship between objects

24

More on Access Control

• Public inheritance
• private members of the base class are inaccessible in the derived class; protected members

remain protected; and public members remain public

• Protected inheritance
• private members of the base class are inaccessible in the derived class; protected members

remain protected; but public members become protected

• Private inheritance
• private members of the base class are inaccessible in the derived class; protected and public

members become private

25

	Slide 1: CS 162 Intro to Computer Science II
	Slide 2: Odds and Ends
	Slide 3: Today’s topics
	Slide 4: Big Three Activity
	Slide 5: Big Three Activity
	Slide 6: Big Three Activity
	Slide 7: Asm3 Hints:
	Slide 8: Introduction to Inheritance
	Slide 9: Basic of Inheritance
	Slide 10: Why is Inheritance useful?
	Slide 11: Let’s draw the hierarchy
	Slide 12: Inheritance (cont…)
	Slide 13: Inheritance vs. Composition
	Slide 14: Define Inheritance
	Slide 15: These things are NOT Inherited:
	Slide 16: Interface (.h)
	Slide 17: Implementation (.cpp)
	Slide 18: Inheritance with the Big 3
	Slide 19: Inherited but Restricted
	Slide 20: Public vs. Private vs. Protected
	Slide 21: Creation
	Slide 22: Deletion
	Slide 23: More on Access Control
	Slide 24: More on Access Control
	Slide 25: More on Access Control

