
CS 162
Intro to Computer Science II

Lecture 18

Polymorphism

2/28/24

1



C++ Upcasting and Downcasting

• Upcasting and downcasting gives a possibility to build complicated programs with a 
simple syntax. It can be achieved by using Polymorphism (later).

• Upcasting: treat a derived type (child) as its base type (parent) 
• Always allowed in public inheritance 

• i.e. assign a child to parent, Animal a = m; // m is a Monkey object

• Downcasting: treat a base type (parent) as its derived type (child)
• Not always allowed, need to manually assigned

• i.e. assign a parent to child, Monkey m = a; //this gives you an error

• In short, use upcasting often
• To help you memorize, “A child can become a parent, but a parent cannot become a child 

again.” 

2



Polymorphism

• Polymorphism – the condition of having many forms

• It allows us to treat an object of one class as an object of a different class, 
typically where the two classes are related by inheritance

• Why we need polymorphism? Consider this… 

• Classes structure: 
• Monkey, Sea_Otter, and Sloth are derived from Animal

3



Polymorphism

• Write a program to allow someone to work with animals
• The animals could be one of many types: monkey, sloth, sea otter, etc. 

• The animals can be entered in any order

• We’d like to store all of the animals in a single array, so we can work with them all at once (e.g.
to let them make noise at once)

• Still, when working with an individual animal in the array, we want that animal to exhibit all of
the characteristics of its specific class, like the way they make noises

4



Polymorphism (objects)

• First, let’s look at polymorphism by seeing what happens when we try to cast between object types:

Animal a1;

Monkey m1 (“monkey1”, 10, 15);

a1 = m1;

a1.display();

a1.make_noise(4);

• What type of casting is this? Upcasting or downcasting? 

• Recall: 
• Upcasting: converting a derived class reference or pointer to a base class
• Downcasting: converting a base class reference or pointer to a derived class

• Demo…

5



Polymorphism (objects)

• Note: for functions that were redefined in the Monkey class (i.e. the derived 
class), the version of the function from the Animal class (i.e. the base class) is 
used. 

• When upcasting, specialized information and functions from the derived class 
(like the Monkey’s longest_jump and redefined display() and 
make_noise()) are lost.

• The only information and functions available in the upcasted object are those that were defined in the 
base class to which we’re casting.

6



Polymorphism (objects)

• What happens when we try to cast the other way (downcasting):

Animal a2 (“animal2”, 20);

Monkey m2 = a2;

• Demo…

• This doesn’t even compile…
• Which makes sense. An Animal is not necessarily a Monkey, it can be a Sea_Otter or Sloth, too. 

Thus we can’t automatically cast an Animal object as a Monkey object.

7



Polymorphism (pointers)

• What happens when we start working with pointers:

Animal *a_ptr;

Monkey m3 (“monkey3”, 5, 20);

a_ptr = &m3;

a_ptr->display();

a_ptr->make_noise(4);

• Demo…

• Same as upcasting objects above. The specialized information and functions from 
the derived Monkey class are lost.

8



Why it’s not working?

• The reason even the pointer here is treated as an Animal object is because the 
decision about what functions to call here are made at compile time

• This is called static binding

• We need a better weapon to accomplish our goals… 

9



Virtual functions
• Use virtual functions and pointers together to bypass static binding

• A virtual function is one that is declared in the base class with the virtual
keyword
virtual void some_function();

• This indicates to the compiler that dynamic binding should be used at runtime, to 
determine which version of the function to call based on what kind of object is being 
pointed to.

• i.e. 

Animal* a_ptr = &m1;

a_ptr->make_noise(4); // make_noise() is a virtual function 

• Demo…

10



More details on virtual 

• The determination about which function to call at runtime instead 
of compile time:

• When each function is called, C++ will figure out what specific class of object is 
being pointed to by the base class pointer (i.e. a_ptr)

• Once it figures out what class of object is pointed to, it will traverse up the 
inheritance chain (first checking Monkey, then Animal) until it finds an 
implementation of the called function.

• The first class to implement the called function in the chain will have that function 
called.

• This is true polymorphism: a pointer to an Animal object is being 
treated differently depending on what kind of object it actually 
points to.

11



Memory layout of virtual functions
• Let’s start with a simple class:

class Base {

private:

int var;

public:

void fun1();

void fun2();

};

Base b_obj;

12

• Memory Layout

0x1000 
(ptr to Base::fun1())

0x2000 
(ptr to Base::fun2())

var

Function def:

//Addr: 0x1000
void Base::fun1() {

}

//Addr: 0x2000
void Base::fun2() {

}

b_obj



Memory layout of virtual functions
• Now, let’s add two virtual func:
class Base {

private:

int var;

public:

void fun1();

void fun2();

virtual void fun3();

virtual void fun4();

};

Base b_obj;

13

• Memory Layout

0x2000 
(ptr to Base::fun1())

0x1000 
(ptr to Base::fun2())

var

vptr

Function def:

//Addr: 0x1000
void Base::fun1() {

}

//Addr: 0x2000
void Base::fun2() {

}

//Addr: 0x3000
void Base::fun3() {

}

//Addr: 0x4000
void Base::fun4() {

}

0x3000 
(ptr to Base::fun3())

0x4000 
(ptr to Base::fun4())

b_obj

Virtual Table of Base



Memory layout of virtual functions
• vptr (Virtual Pointer)

• The pointer which contains address of the Virtual 
Table

• vptr is associated with object, meaning that each 
object of that class is having a different vptr pointing 
to the same Virtual Table

• Virtual Table (VTable)
• A memory space reserved by compiler to place 

address of virtual functions 

• VTable is associated with class, meaning that there 
will be at most 1 for each class, no matter how many 
objects of that class have been created. All objects 
of that class will share the same VTable

14

…

vptr

Function def:

…

…

//Addr: 0x3000
void Base::fun3() {

}

//Addr: 0x4000
void Base::fun4() {

}

0x3000 
(ptr to Base::fun3())

0x4000 
(ptr to Base::fun4())

b_obj

Virtual Table of Base



Memory layout of virtual functions
• Memory layout for obj1, obj2, and obj3:

15

…

…

…

vptr

Function def:

//Addr: 0x1000
void Base::fun1() {

}

//Addr: 0x2000
void Base::fun2() {

}

//Addr: 0x3000
void Base::fun3() {

}

//Addr: 0x4000
void Base::fun4() {

}

0x3000 
(ptr to Base::fun3())

0x4000 
(ptr to Base::fun4())

…

…

…

vptr

…

…

…

vptr

obj1

obj2

obj3

Virtual Table of Base



Memory layout of virtual functions
• Let’s add a class derived from Base

class Base {

private:

int var;

public:

void fun1();

void fun2();

virtual void fun3();

virtual void fun4();

};

class Derived : public Base {

public:

void fun3();

};

Base b_obj; Derived d_obj;

16

• Memory Layout

0x2000 
(ptr to Base::fun1())

0x1000 
(ptr to Base::fun2())

var

vptr

Function def:

//Addr: 0x1000
void Base::fun1() {
}

//Addr: 0x2000
void Base::fun2() {
}

//Addr: 0x3000
void Base::fun3() {
}

//Addr: 0x4000
void Base::fun4() {
}

//Addr: 0x5000
void Derived::fun3(){
}

0x3000 
(ptr to Base::fun3())

0x4000 
(ptr to Base::fun4())

0x5000 
(ptr to Derived::fun3())

0x4000 
(ptr to Base::fun4())

0x2000 
(ptr to Base::fun1())

0x1000 
(ptr to Base::fun2())

var

vptr

Virtual Table of Base

Virtual Table of Derived

b_obj

d_obj



Memory layout of virtual functions
• Let’s invoke these methods
Base *b_ptr;

Base b_obj; 

Derived d_obj;

b_obj.fun3();

b_ptr = &b_obj;

b_ptr->fun3();

b_ptr = &d_obj;

b_ptr->fun3();

17

• Memory Layout

0x2000 
(ptr to Base::fun1())

0x1000 
(ptr to Base::fun2())

var

vptr

Function def:

//Addr: 0x1000
void Base::fun1() {
}

//Addr: 0x2000
void Base::fun2() {
}

//Addr: 0x3000
void Base::fun3() {
}

//Addr: 0x4000
void Base::fun4() {
}

//Addr: 0x5000
void Derived::fun3(){
}

0x3000 
(ptr to Base::fun3())

0x4000 
(ptr to Base::fun4())

0x5000 
(ptr to Derived::fun3())

0x4000 
(ptr to Base::fun4())

0x2000 
(ptr to Base::fun1())

0x1000 
(ptr to Base::fun2())

var

vptr

b_obj

d_obj

Virtual Table of Base

Virtual Table of Derived



Virtual Destructors

• Let’s define destructors for our Animal, Monkey, Sea_Otter, and Sloth
class

• Demo…

• We’ve created a Monkey object, but only the Animal destructor is being called. 
• If we’d allocated memory in the Monkey class that were relying on the destructor to clean, 

that memory would never be freed, resulting in a memory leak.

18



Virtual Destructors

• Thus, when using polymorphism, it’s very important to make your base class’s 
destructor virtual

• Demo…

19



Additional notes:
• When you declare a function as virtual in a base class, it automatically becomes virtual 

in all classes derived from that base class, whether you declare it as virtual there or not

• This form of polymorphism works with references as well as pointers. 

Animal &a = m1;

a.make_noise(); // will call the make_noise() in Monkey class if it 

is declared to be virtual in the animal class

• This allows us to pass an Monkey object into a function that takes a reference to an Animal object as an 
argument

void some_func(Animal& a);

Call: some_func(m1);

20



Abstract classes
• Abstract class 

• can only be used as a base class

• you cannot instantiate objects of an abstract class

• A class becomes abstract when it has at least one virtual function without a definition 
• Such a function is known as a pure virtual function

• To declare a pure virtual function, simply set it equal to zero:

class Animal{

public:

…

virtual void make_noise() = 0; //=0 means no definition

};

21



Abstract classes
class Animal{

public:

…

virtual void make_noise() = 0; //=0 means no definition

};

• Because the make_noise() is purely virtual, the Animal class becomes an abstract 
class. That means we cannot create an Animal object, i.e. both of these becomes errors:

Animal a;

Animal *a = new Animal;

• But you can still create pointers of abstract class, and let them point to classes derived from 
the abstract class, i.e. 

Animal *a1 = new Monkey;

Animal *a2 = new Sloth;

a1->make_noise() // call make_noise() of Monkey

a2->make_noise() // call make_noise() of Sloth

22



Use of Abstract Classes
• Note: each pure virtual function needs a definition in all its derived class(es)

• All the common code in derived classes is written in abstract class
• Same as normal inheritance, why we need abstract class? 

23



Use of Abstract Classes
• Let’s consider our demo… 

• Make make_noise() pure virtual in Animal class

• Why? Because every animal can make different noises

• We wanted all derived class to define this function in their class to make noises

• Demo …

• Animal now has become abstract class

• Is there any use of Animal class objects?

• No, they represent nothing. 

• So we need abstract class to prevent making objects of that class

• If you let any 3rd party to implement a Tiger class, making Animal abstract will enforce them 
to implement the make_noise() in the Tiger class

24



Vector: Example of a template class

• Arrays that can grow and shrink in length while the program is running

• Formed from template class in the Standard Template Library (STL)

• Has a base type and stores a collections of this base type: vector <int> v; 

• Still starts indexing at 0, can still use [] to access things

• Use push_back() to add one element to the end

• Number of elements == size

• How much memory currently allocated == capacity

25



More vectors

• We need to #include <vector> to use std::vector

• We use push_back() to add elements

• Use pop_back() to get rid of the last element

• size() – how many elements inside the vector

• capacity() – how many elements it can hold (allocated memory)

• We can use operator[] or at() to access specific elements
• i.e. 

vec[1] or vec.at(1)

• Note: [] does not throw an exception for an out-of-range that at() does

26



More vectors

• To make 2D vectors:
vector <vector<int> > vec_2d;

for (int i = 0; i < row; i++){

vector<int> row_vec;

for (int j = 0; j < col; j++)

row_vec.push_back(i * j);

vec_2d.push_back(row_vec);

} 

• Note:
• We need the extra space between angle brackets in the declaration of vec_2d, to tell it 

from the >> operator

27



More vectors

• std::vector has a lot more functionalities:
• It has constructors that allow us to initialize the vector with a specified size and even a 

specified initial value: 

vector <int> vec1(20); // Allocate vector of size 20

vector <int> vec2(10,7); // Fill vector with 10 7s

28



More vectors

• std::vector has a lot more functionalities:
• It has constructors that allow us to initialize the vector with a specified size and even a specified 

initial value: 

vector <int> vec1(20); // Allocate vector of size 20

vector <int> vec2(10,7); // Fill vector with 10 7s

• .size() – returns the size of the vector

• .resize() – changes size

• .empty() – test whether the vector is empty

• .front() – access the first element

• .back() – access the last element

• .clear() – clear content

• .swap() – swap content

• More: https://cplusplus.com/reference/vector/vector/

29

https://cplusplus.com/reference/vector/vector/

	Slide 1: CS 162 Intro to Computer Science II
	Slide 2: C++ Upcasting and Downcasting
	Slide 3: Polymorphism
	Slide 4: Polymorphism
	Slide 5: Polymorphism (objects)
	Slide 6: Polymorphism (objects)
	Slide 7: Polymorphism (objects)
	Slide 8: Polymorphism (pointers)
	Slide 9: Why it’s not working?
	Slide 10: Virtual functions
	Slide 11: More details on virtual 
	Slide 12: Memory layout of virtual functions
	Slide 13: Memory layout of virtual functions
	Slide 14: Memory layout of virtual functions
	Slide 15: Memory layout of virtual functions
	Slide 16: Memory layout of virtual functions
	Slide 17: Memory layout of virtual functions
	Slide 18: Virtual Destructors
	Slide 19: Virtual Destructors
	Slide 20: Additional notes:
	Slide 21: Abstract classes
	Slide 22: Abstract classes
	Slide 23: Use of Abstract Classes
	Slide 24: Use of Abstract Classes
	Slide 25: Vector: Example of a template class
	Slide 26: More vectors
	Slide 27: More vectors
	Slide 28: More vectors
	Slide 29: More vectors

