
CS 162
Intro to Computer Science II

Lecture 20

Vector

Template

Standard Template Library

3/4/24

1



Odds and Ends

• Lab 9 posted

• Assignment 4 posted

2



Recap: Vocabulary:

• Polymorphism
• Treat an object of one class as an object of a different class 

• A call to a member function executes different code depending on the type of calling object

• Virtual function

virtual void fun();

• A base-class function that is declared as virtual, indicating to the compiler that it should wait 
until run-time to determine which version of that function to run

• A virtual function can be overridden if it is redefined in a child class

3



Recap: Vocabulary:

• Dynamic binding (late binding)
• Used when the type of object is evaluated at runtime. The compiler generated code 

(vpointer, vtable) will check to determine the object type and then execute the correct 
version of code

• This allows C++ to support polymorphism 

• We do this using the virtual keyword

• Static binding (Early binding)
• The default behavior in C++. A function call always executes the same version of code

4



Recap: Vocabulary:

• Pure virtual function (also known as abstract function)

virtual void fun() = 0;

• A virtual function that has no definition in the base class

• Used when you are intending for child classes to implement the function

• Abstract class
• Any class that has one or more pure virtual functions 

• An abstract class cannot be instantiated (i.e. you cannot create an object of an abstract class

5



Use of Abstract Classes
• Note: each pure virtual function needs a definition in all its derived class(es)

• All the common code in derived classes is written in abstract class
• Same as normal inheritance, why we need abstract class? 

6



Use of Abstract Classes
• Let’s consider our demo… 

• Make make_noise() pure virtual in Animal class

• Why? Because every animal can make different noises

• We wanted all derived class to define this function in their class to make noises

• Demo …

• Animal now has become abstract class

• Is there any use of Animal class objects?

• No, they represent nothing. 

• So we need abstract class to prevent making objects of that class

• If you let any 3rd party to implement a Tiger class, making Animal abstract will enforce them 
to implement the make_noise() in the Tiger class

7



Vector: Example of a template class

• Arrays that can grow and shrink in length while the program is running

• Formed from template class in the Standard Template Library (STL)

• Has a base type and stores a collections of this base type: vector <int> v; 

• Still starts indexing at 0, can still use [] to access things

• Use push_back() to add one element to the end

• Number of elements == size

• How much memory currently allocated == capacity

8



More vectors

• We need to #include <vector> to use std::vector

• We use push_back() to add elements

• Use pop_back() to get rid of the last element

• size() – how many elements inside the vector

• capacity() – how many elements it can hold (allocated memory)

• We can use operator[] or at() to access specific elements
• i.e. 

vec[1] or vec.at(1)

• Note: [] does not throw an exception for an out-of-range that at() does

9



More vectors

• To make 2D vectors:
vector <vector<int> > vec_2d;

for (int i = 0; i < row; i++){

vector<int> row_vec;

for (int j = 0; j < col; j++)

row_vec.push_back(i * j);

vec_2d.push_back(row_vec);

} 

• Note:
• We need the extra space between angle brackets in the declaration of vec_2d, to tell it 

from the >> operator

10



More vectors

• std::vector has a lot more functionalities:
• It has constructors that allow us to initialize the vector with a specified size and even a 

specified initial value: 

vector <int> vec1(20); // Allocate vector of size 20

vector <int> vec2(10,7); // Fill vector with 10 7s

11



More vectors

• std::vector has a lot more functionalities:
• It has constructors that allow us to initialize the vector with a specified size and even a specified 

initial value: 

vector <int> vec1(20); // Allocate vector of size 20

vector <int> vec2(10,7); // Fill vector with 10 7s

• .size() – returns the size of the vector

• .resize() – changes size

• .empty() – test whether the vector is empty

• .front() – access the first element

• .back() – access the last element

• .clear() – clear content

• .swap() – swap content

• More: https://cplusplus.com/reference/vector/vector/

12

https://cplusplus.com/reference/vector/vector/


Today’s topic(s)

• Templates

• Standard Template Library (STL)

• Linked List

13



Templates
• How would you write a function to swap two ints?

void swap (int& a, int& b){

int temp = a;

a = b;

b = temp;

}

• What if we also want to swap two floats?
void swap (float& a, float& b){

float temp = a;

a = b;

b = temp;

}

• Two doubles? Two chars? Two strings? Two Animal objects?...

14



Function Templates

• Useful when have a general algorithm which doesn’t change even if types change

• Algorithm Abstraction: expressing algorithms in a very general way so that we can ignore 
incidental detail and concentrate on the substantive part of the algorithm

• Classic example: swap
• We can create a template function which can take any type

template <class T>

void swap (T& a, T& b){

T temp = a;

a = b;

b = temp;

}

15



Function Templates
• template <class T>

• Referred to as template prefix

• Tells the compiler that the definition that follows is a template

• T is a type parameter

• To call this function template, we can explicitly specify our template parameter using angle 
brackets:

• swap<int>(i, j); // where i and j are ints

• swap<float>(x,y); // where x and y are floats

• swap<Animal>(a1, a2); //where a1 and a2 are Animals

• Since swap() takes parameters of the template type T, we don’t need to explicitly specify the 
template type, i.e. these also work:

• swap(i, j); // where i and j are ints

• swap(x,y); // where x and y are floats

• swap(a1, a2); //where a1 and a2 are Animals

16



Function Templates

• We can write function templates that include any number of template 
parameters, e.g:

template <class T, class U>

void print_two_things(T first, U second){

cout << first << second << endl;

}

And we can call it as before:

print_two_things<string, int>(“number: ”, 1);

print_two_things(2.5, ‘e’);

17



Note: 

• The compiler generates a new implementation of the template for each type with 
which it is used.
• This means concrete implementations of templates (i.e. int, float) are not created until 

compile time

• Therefore, we cannot explicitly compile template implementations into object 
files from .cpp files. 
• In fact, we can’t separate template implementations into separate .cpp files at all

• Instead, we need to write template implementations either in the same file in which they are 
used or else in a header (.h) file 

18



Template Classes

• Work the same way as templated functions

• All functions within the class will operate on the provided types

• Scope with ClassName<T>::functionname() 

• Each function needs the Template prefix

19



Today’s topic(s)

• Template

• Standard Template Library (STL)

20



Standard Template Library (STL)
• C++ STL can be broken down into:

• Containers – general purpose data structures (templates) for holding things

• Iterators – special classes for traversing containers

• Algorithms – sorting, searching, etc.

• Iterators make it possible to run the algorithm on the containers

• The STL is a great resource:
• It contains a wide variety of very useful structures and algorithms

• It is well-implemented, which means the structures and algorithms perform 
very efficiently

• In general, it allows us to avoid re-inventing the wheel 

21



Introducing STL Containers

• Predefined templates that can store any type of data

• The appropriate container will be dictated by the application requirements

• Example considerations:
• Does the data need to be stored?

• How will the data be accessed?
• Front to back

• Randomly?

• Will additional data ever need to be added or removed?

• Careful planning will allow you to write clean, efficient code 

22



Types of Containers

• Sequential containers (vector, deque, list)
• Programmer controls the order of the elements

• Associative containers (map, set, multimap, multiset)
• Position of elements is controlled by container

• Elements are generally accessed by using a “key”

• Adapters (stack, queue)
• Use an existing type of container to build other types

• In this context, we call these “Abstract Data Types”

23



Examples of C++ Containers

• <array> - stores a constant amount of data in contiguous memory

• <vector> - An array that can be resized

• <list> - Linked list that stores data in non-contiguous memory

• <set> - An ordered collection of items

• <queue> - Stores data & returns it in the order it was received
• First in, first out

• <stack> - Stores data & returns it in the opposite order that it was received 
• First in, last out

• Generally, it is a good idea to refer to the STL documentation before starting a project

24

http://www.cplusplus.com/reference/stl/

	Slide 1: CS 162 Intro to Computer Science II
	Slide 2: Odds and Ends
	Slide 3: Recap: Vocabulary:
	Slide 4: Recap: Vocabulary:
	Slide 5: Recap: Vocabulary:
	Slide 6: Use of Abstract Classes
	Slide 7: Use of Abstract Classes
	Slide 8: Vector: Example of a template class
	Slide 9: More vectors
	Slide 10: More vectors
	Slide 11: More vectors
	Slide 12: More vectors
	Slide 13: Today’s topic(s)
	Slide 14: Templates
	Slide 15: Function Templates
	Slide 16: Function Templates
	Slide 17: Function Templates
	Slide 18: Note: 
	Slide 19: Template Classes
	Slide 20: Today’s topic(s)
	Slide 21: Standard Template Library (STL)
	Slide 22: Introducing STL Containers
	Slide 23: Types of Containers
	Slide 24: Examples of C++ Containers

