
CS 162
Intro to Computer Science II

Lecture 22

Recursion

Template, STL

Linked List

3/8/24

1

Odds and Ends

• Design exercise 4 & document due Sunday midnight via Canvas

2

Today’s topic(s)

• Recursion

3

Exercise

• Write your own recursive int pwr() function that takes two integers as
arguments and returns the integer result.

• Prototype: int pwr(int base, int exp);

Demo…

5

Pros and Cons of Recursion

• Pros
• Readable

• Sometimes easier to conceptualize for problems that have many moving parts

• Cons
• Efficiency

• Memory usage
• Each call to the function makes a new function stack frame (see previous slides)

6

Today’s topic(s)

• Templates

• Standard Template Library (STL)

• Linked List

7

Templates
• How would you write a function to swap two ints?

void swap (int& a, int& b){

 int temp = a;

 a = b;

 b = temp;

}

• What if we also want to swap two floats?
void swap (float& a, float& b){

 float temp = a;

 a = b;

 b = temp;

}

• Two doubles? Two chars? Two strings? Two Animal objects?...

8

Function Templates

• Useful when have a general algorithm which doesn’t change even if types change

• Algorithm Abstraction: expressing algorithms in a very general way so that we can ignore
incidental detail and concentrate on the substantive part of the algorithm

• Classic example: swap
• We can create a template function which can take any type

template <class T>

void swap (T& a, T& b){

 T temp = a;

 a = b;

 b = temp;

}

9

Function Templates
• template <class T>

• Referred to as template prefix

• Tells the compiler that the definition that follows is a template

• T is a type parameter

• To call this function template, we can explicitly specify our template parameter using angle
brackets:
• swap<int>(i, j); // where i and j are ints

• swap<float>(x,y); // where x and y are floats

• swap<Animal>(a1, a2); //where a1 and a2 are Animals

• Since swap() takes parameters of the template type T, we don’t need to explicitly specify the
template type, i.e. these also work:
• swap(i, j); // where i and j are ints

• swap(x,y); // where x and y are floats

• swap(a1, a2); //where a1 and a2 are Animals

10

Function Templates

• We can write function templates that include any number of template
parameters, e.g:

 template <class T, class U>

 void print_two_things(T first, U second){

 cout << first << second << endl;

 }

And we can call it as before:

 print_two_things<string, int>(“number: ”, 1);

 print_two_things(2.5, ‘e’);

11

Note:

• The compiler generates a new implementation of the template for each type with
which it is used.
• This means concrete implementations of templates (i.e. int, float) are not created until

compile time

• Therefore, we cannot explicitly compile template implementations into object
files from .cpp files.
• In fact, we can’t separate template implementations into separate .cpp files at all

• Instead, we need to write template implementations either in the same file in which they are
used or else in a header (.h) file

12

Template Classes

• Work the same way as templated functions

• All functions within the class will operate on the provided types

• Scope with ClassName<T>::functionname()

• Each function needs the Template prefix

13

Today’s topic(s)

• Template

• Standard Template Library (STL)

14

Standard Template Library (STL)
• C++ STL can be broken down into:

• Containers – general purpose data structures (templates) for holding things

• Iterators – special classes for traversing containers

• Algorithms – sorting, searching, etc.

• Iterators make it possible to run the algorithm on the containers

• The STL is a great resource:
• It contains a wide variety of very useful structures and algorithms

• It is well-implemented, which means the structures and algorithms perform
very efficiently

• In general, it allows us to avoid re-inventing the wheel

15

Introducing STL Containers

• Predefined templates that can store any type of data

• The appropriate container will be dictated by the application requirements

• Example considerations:
• Does the data need to be stored?

• How will the data be accessed?
• Front to back

• Randomly?

• Will additional data ever need to be added or removed?

• Careful planning will allow you to write clean, efficient code

16

Types of Containers

• Sequential containers (vector, deque, list)
• Programmer controls the order of the elements

• Associative containers (map, set, multimap, multiset)
• Position of elements is controlled by container

• Elements are generally accessed by using a “key”

• Adapters (stack, queue)
• Use an existing type of container to build other types

• In this context, we call these “Abstract Data Types”

17

Examples of C++ Containers

• <array> - stores a constant amount of data in contiguous memory

• <vector> - An array that can be resized

• <list> - Linked list that stores data in non-contiguous memory

• <set> - An ordered collection of items

• <queue> - Stores data & returns it in the order it was received
• First in, first out

• <stack> - Stores data & returns it in the opposite order that it was received
• First in, last out

• Generally, it is a good idea to refer to the STL documentation before starting a project

18

http://www.cplusplus.com/reference/stl/

Linked List

• A list constructed using pointers

• Can grow and shrink easily while the program is running

• Not stored contiguously in memory

• Use structs to create

struct Node {

 int val;

 Node* next;

};

19

Singly Linked List

20

In class activity

• Use the code provided on Canvas, complete the following tasks:
• Task 1: What does the code do? (Hint: Trace through the code by drawing the

picture out)

• Task 2: Write code to print the list you just created. Trace the code you wrote
to verify
• Hint: Use while loop and Node* current

• Task 3: Delete the list you just created. Trace the code you wrote to verify
• Hint: You might need another Node*

21

Pros and Cons of Singly Linked List

• Pros
• Easy to implement

• Insertion and deletion of elements can be done easily and doesn’t requires movement of all
elements compared to an array

• Can allocate or deallocate memory easily during its execution

• Cons
• Uses more memory when compared to an array

• No random access

• Traversing in reverse is not possible for singly linked list

22

	Slide 1: CS 162 Intro to Computer Science II
	Slide 2: Odds and Ends
	Slide 3: Today’s topic(s)
	Slide 4: Exercise
	Slide 5: Demo…
	Slide 6: Pros and Cons of Recursion
	Slide 7: Today’s topic(s)
	Slide 8: Templates
	Slide 9: Function Templates
	Slide 10: Function Templates
	Slide 11: Function Templates
	Slide 12: Note:
	Slide 13: Template Classes
	Slide 14: Today’s topic(s)
	Slide 15: Standard Template Library (STL)
	Slide 16: Introducing STL Containers
	Slide 17: Types of Containers
	Slide 18: Examples of C++ Containers
	Slide 19: Linked List
	Slide 20: Singly Linked List
	Slide 21: In class activity
	Slide 22: Pros and Cons of Singly Linked List

