
CS 162
Intro to Computer Science II

Lecture 23

STL

Linked List

3/11/24

1

Odds and Ends

• Lab 10 + Worksheet 10 posted

• Assignment 5 rubrics posted

2

Today’s topic(s)

• Standard Template Library (STL)

• Linked List

3

Template Classes

• Work the same way as templated functions

• All functions within the class will operate on the provided types

• Scope with ClassName<T>::functionname()

• Each function needs the Template prefix

4

Today’s topic(s)

• Template

• Standard Template Library (STL)

5

Standard Template Library (STL)
• C++ STL can be broken down into:

• Containers – general purpose data structures (templates) for holding things

• Iterators – special classes for traversing containers

• Algorithms – sorting, searching, etc.

• Iterators make it possible to run the algorithm on the containers

• The STL is a great resource:
• It contains a wide variety of very useful structures and algorithms

• It is well-implemented, which means the structures and algorithms perform
very efficiently

• In general, it allows us to avoid re-inventing the wheel

6

Introducing STL Containers

• Predefined templates that can store any type of data

• The appropriate container will be dictated by the application requirements

• Example considerations:
• Does the data need to be stored?

• How will the data be accessed?
• Front to back

• Randomly?

• Will additional data ever need to be added or removed?

• Careful planning will allow you to write clean, efficient code

7

Types of Containers

• Sequential containers (vector, deque, list)
• Programmer controls the order of the elements

• Associative containers (map, set, multimap, multiset)
• Position of elements is controlled by container

• Elements are generally accessed by using a “key”

• Adapters (stack, queue)
• Use an existing type of container to build other types

• In this context, we call these “Abstract Data Types”

8

Examples of C++ Containers

• <array> - stores a constant amount of data in contiguous memory

• <vector> - An array that can be resized

• <list> - Linked list that stores data in non-contiguous memory

• <set> - An ordered collection of items

• <queue> - Stores data & returns it in the order it was received
• First in, first out

• <stack> - Stores data & returns it in the opposite order that it was received
• First in, last out

• Generally, it is a good idea to refer to the STL documentation before starting a project

9

http://www.cplusplus.com/reference/stl/

Linked List

• A list constructed using pointers

• Can grow and shrink easily while the program is running

• Not stored contiguously in memory

• Use structs to create

struct Node {

 int val;

 Node* next;

};

10

Singly Linked List

11

In class activity

• Use the code provided on Canvas, complete the following tasks:
• Task 1: What does the code do? (Hint: Trace through the code by drawing the

picture out)

• Task 2: Write code to print the list you just created. Trace the code you wrote
to verify

• Hint: Use while loop and Node* current

• Task 3: Delete the list you just created. Trace the code you wrote to verify
• Hint: You might need another Node*

12

Pros and Cons of Singly Linked List

• Pros
• Easy to implement

• Insertion and deletion of elements can be done easily and doesn’t requires movement of all
elements compared to an array

• Can allocate or deallocate memory easily during its execution

• Cons
• Uses more memory when compared to an array

• No random access

• Traversing in reverse is not possible for singly linked list

13

Today’s topic(s)

• Begin Complexity Analysis

14

How to compare/describe algorithms

• We have different data structures and sorting algorithms, how to compare them?

• We want a way to characterize runtime or memory usage that is completely
platform-independent
• i.e. does not depend on hardware, operating system, programming language, etc.

15

Complexity Analysis

• Use Complexity Analysis to help make platform-independent comparisons of
data structures
• Refer to as Big O

• Allow us to assess a data structure or algorithm’s resource usage (i.e., runtime
and memory consumption) in an abstract way

• To do this, we describe how a data structure’s or algorithm’s runtime or memory
usage changes relative to a change in the input size (n)

16

Big O

• We use Big O notation to assess a data structure or algorithm’s
performance.

• Big O notation: a tool for characterizing a function in terms of its
growth rate
• Indicate an upper bound on the function’s growth rate, known as growth

order

17

Big O

18

g(x) provides an upper bound on f(x)

g(x) is O(f(x))

Big O

• To assess a data structure or algorithm’s complexity, we will compute
a growth order for its runtime (or memory usage) as a function of the
input size n

• Importantly, we want to describe how data structures behave in the
limit, as n approaches ∞ (infinity)

19

Common growth order functions

20

Common growth order functions

21

• O(1) – constant complexity

• O(log n) – log‐n complexity

• O(√n) – root‐n complexity

• O(n) – linear complexity

• O(n log n) – n‐log‐n complexity

• O(𝑛2) – quadratic complexity

• O(𝑛3) – cubic complexity

• O(2𝑛) – exponential complexity

• O(n!) – factorial complexity

Big O

• Consider this example…

 int sum = 0;

 for (i = 0; i < n; i++) {

 sum += array[i];

 }

 return sum;

• This function is summing an array of n integers

• What’s the run-time complexity of the function?

22

Big O example

int sum = 0;

 for (i = 0; i < n; i++) {

 sum += array[i];

 }

 return sum;

• The instruction int sum = 0; executes in some constant time c1 independent of n

• Each iteration of the loop executes in some constant time c2, and this happens n times

• The return statement executes in some constant time c3 independent of n

• So runtime is c1 + c2*n + c3

• c1, c2, and c3 depend on the particular computer running this function, so we ignore them to
figure out run-time complexity

• Thus, this function grows on the order of n, a.k.a. its run-time complexity is O(n)

23

Determining a program’s complexity

node* push (node * head, int val) {

 node *temp = new node;

 temp->val =val;

 temp->next = head;

 head = temp;

 return head;

}

• Every instruction in this function executes in some constant time, independent of n

• Thus we ignore them to figure out runtime complexity.

• Complexity: O(c1+c2+c3+c4+c5) = O(1)

24

Dominant components

• When a growth order function has additive terms, one of those will dominate the
others
• Specifically, function f(n) dominates g(n) if n0:n>n0, f(n) > g(n)

• In these cases, we simply ignore the non-dominant terms
• i.e. 𝑛2 − 𝑛, 𝑛2 dominates 𝑛, so we ignore n, and we say this complexity is 𝑂(𝑛2)

25

More examples

• Loops are one of the main determinants of a program’s complexity

• for (int i = 0; i < n; i++) {
 ...
}

• for (int i = n; i > 0; i/=2) {
 ...
}

• for (int i = 0; i*i < n; i++) {
 ...
}

26

More examples

• for (int i = 0; i < n; i++) {

 for (int j = 0; j < n; j++) {

 ...

 }

}

• for (int i = n; i > 0; i/=2) {

 for (int j = 0; j < n; j++) {

 ...

 }

 }

27

Real-world Consideration

• Your program will only perform as well as your design
• Constant factors can still play a part

• Suppose you have two algorithms…
• Algorithm A) 1,000,000n → O(n)

• Algorithm B) 2 n2 → O(n2)

• Which one is better?
• It depends

28

	Slide 1: CS 162 Intro to Computer Science II
	Slide 2: Odds and Ends
	Slide 3: Today’s topic(s)
	Slide 4: Template Classes
	Slide 5: Today’s topic(s)
	Slide 6: Standard Template Library (STL)
	Slide 7: Introducing STL Containers
	Slide 8: Types of Containers
	Slide 9: Examples of C++ Containers
	Slide 10: Linked List
	Slide 11: Singly Linked List
	Slide 12: In class activity
	Slide 13: Pros and Cons of Singly Linked List
	Slide 14: Today’s topic(s)
	Slide 15: How to compare/describe algorithms
	Slide 16: Complexity Analysis
	Slide 17: Big O
	Slide 18: Big O
	Slide 19: Big O
	Slide 20: Common growth order functions
	Slide 21: Common growth order functions
	Slide 22: Big O
	Slide 23: Big O example
	Slide 24: Determining a program’s complexity
	Slide 25: Dominant components
	Slide 26: More examples
	Slide 27: More examples
	Slide 28: Real-world Consideration

