
CS 162
Intro to Computer Science II

Lecture 24

Linked List

Assignment 4 Help

Final remarks

3/15/24

1

Odds and Ends

• Due reminder:
• Quiz 5 due Sunday midnight via Canvas – open after today’s lecture
• Assignment 4 due Sunday midnight via TEACH

• Grace days are allowed

• Today is the last day to demo:
• Assignment 3 without late demo penalty
• Assignment 1&2 with 30% late demo penalty

• Final Exam:
• Wednesday 3/20 at 12pm at LINC 200

2

Today’s topic(s)

• Linked list

• Final exam review

3

In class activity

• Use the code provided on Canvas, complete the following tasks:
• Task 1: What does the code do? (Hint: Trace through the code by drawing the

picture out)

• Task 2: Write code to print the list you just created. Trace the code you wrote
to verify

• Hint: Use while loop and Node* current

• Task 3: Delete the list you just created. Trace the code you wrote to verify
• Hint: You might need another Node*

4

Pros and Cons of Singly Linked List

• Pros
• Easy to implement

• Insertion and deletion of elements can be done easily and doesn’t requires movement of all
elements compared to an array

• Can allocate or deallocate memory easily during its execution

• Cons
• Uses more memory when compared to an array

• No random access

• Traversing in reverse is not possible for singly linked list

5

Today’s topic(s)

• Linked list

• Final exam review

6

Final Exam

• Weight: 15% of course grade

• Time: Wednesday 12:00 – 12:50 pm

• Where: LINC 200

• Close book, close notes, no calculator

• Scratch paper will be provided if needed

• Bring pen/pencil, and your photo ID

• Question types:
• T/F, multiple choice
• Similar as the midterm exam ☺

• Question amount: ~40

7

Coverage

• Non-cumulative

• Emphasis on material covered after Midterm (90%)
• Lecture 14-24 (start from shallow vs. deep copy)

• Lab 6 – 10

• Worksheet 6-10

• Assigned Reading

• Assignment 3-4

• General coverage of earlier topics (10%)

8

Topics

• Shallow vs. Deep copy

• Big 3 and their usage

• Inheritance

• Upcasting vs. downcasting

• Polymorphism

• Virtual vs. pure virtual

• Abstract class

9

• Function/class templates

• Standard Template Class (STL)
• vector

• Containers

• Linked List (singly)

• Recursion

Study Guide

• Take the practice exam and time yourself

• Lecture slides 14-24

• Quiz 3-5

• Worksheet 6-10

• Lab 6-10

• Assignment 3-5

• Assigned readings

10

Winter 2023 Exam Review

11

You have learned MANY things from CS 162
• Pointers

• Memory model
• Stack vs. heap

• Dynamic Arrays

• Structs

• File separation
• .h .cpp
• Header guards

• Makefile
• Compilation process

• File I/O

• Object Oriented Programming
• Encapsulation

• Struct vs. Class
12

• C++ Classes
• Access specifiers: private, public, protected
• Accessor and Mutator functions
• this keyword
• Constructors: default vs. non-default
• const
• Big Three

• Copy constructor
• Assignment operator overload
• Destructor

• Class composition vs. class inheritance
• Polymorphism

You have learned MANY things from CS 162

• Template
• STL

• Containers
• Linked list vs. array

• Vector

• Recursion

13

Be Confident…

Now you are able to…

• Design and implement programs that require:
• multiple classes and structures
• hierarchies of classes that use inheritance and polymorphism
• an understanding of abstraction, modularity and separation of concerns

• Construct and use basic linear structures (arrays, stacks, queues, and various
linked lists) in programs, and be able to describe instances appropriate for
their use.

• Develop test-data sets and testing plans for programming projects.

• Produce recursive algorithms, and choose appropriately between iterative
and recursive algorithms.

14

Final Remarks…

• Thank you so much for your commitment to this course

• What’s next ?
• CS 261: Data Structure
• ECE/CS 271: Computer Architecture and Assembly Language
• CS 290: Web Development

• Future improvements?
• Canvas SLE→

• ULA position
• Contact me! And apply through: https://jobs.oregonstate.edu/postings/140560

15

https://jobs.oregonstate.edu/postings/140560

Final Remarks…

• Submit all your work by the deadline
• Assignment 4, Quiz 5

• Take the Final Exam on Wednesday
• Bring your photo ID

• Grade disputation:
• By 3/23 6pm

16

Assignment 4 Q&A

17

*Additional topic(s)

• Complexity Analysis

*Note: this will not be in the final

18

How to compare/describe algorithms

• We have different data structures and sorting algorithms, how to compare them?

• We want a way to characterize runtime or memory usage that is completely
platform-independent
• i.e. does not depend on hardware, operating system, programming language, etc.

19

Complexity Analysis

• Use Complexity Analysis to help make platform-independent comparisons of
data structures
• Refer to as Big O

• Allow us to assess a data structure or algorithm’s resource usage (i.e., runtime
and memory consumption) in an abstract way

• To do this, we describe how a data structure’s or algorithm’s runtime or memory
usage changes relative to a change in the input size (n)

20

Big O

• We use Big O notation to assess a data structure or algorithm’s
performance.

• Big O notation: a tool for characterizing a function in terms of its
growth rate
• Indicate an upper bound on the function’s growth rate, known as growth

order

21

Big O

22

g(x) provides an upper bound on f(x)

g(x) is O(f(x))

Big O

• To assess a data structure or algorithm’s complexity, we will compute
a growth order for its runtime (or memory usage) as a function of the
input size n

• Importantly, we want to describe how data structures behave in the
limit, as n approaches ∞ (infinity)

23

Common growth order functions

24

Common growth order functions

25

• O(1) – constant complexity

• O(log n) – log‐n complexity

• O(√n) – root‐n complexity

• O(n) – linear complexity

• O(n log n) – n‐log‐n complexity

• O(𝑛2) – quadratic complexity

• O(𝑛3) – cubic complexity

• O(2𝑛) – exponential complexity

• O(n!) – factorial complexity

Big O

• Consider this example…

 int sum = 0;

 for (i = 0; i < n; i++) {

 sum += array[i];

 }

 return sum;

• This function is summing an array of n integers

• What’s the run-time complexity of the function?

26

Big O example

int sum = 0;

 for (i = 0; i < n; i++) {

 sum += array[i];

 }

 return sum;

• The instruction int sum = 0; executes in some constant time c1 independent of n

• Each iteration of the loop executes in some constant time c2, and this happens n times

• The return statement executes in some constant time c3 independent of n

• So runtime is c1 + c2*n + c3

• c1, c2, and c3 depend on the particular computer running this function, so we ignore them to
figure out run-time complexity

• Thus, this function grows on the order of n, a.k.a. its run-time complexity is O(n)

27

Determining a program’s complexity

node* push (node * head, int val) {

 node *temp = new node;

 temp->val =val;

 temp->next = head;

 head = temp;

 return head;

}

• Every instruction in this function executes in some constant time, independent of n

• Thus we ignore them to figure out runtime complexity.

• Complexity: O(c1+c2+c3+c4+c5) = O(1)

28

Dominant components

• When a growth order function has additive terms, one of those will dominate the
others
• Specifically, function f(n) dominates g(n) if n0:n>n0, f(n) > g(n)

• In these cases, we simply ignore the non-dominant terms
• i.e. 𝑛2 − 𝑛, 𝑛2 dominates 𝑛, so we ignore n, and we say this complexity is 𝑂(𝑛2)

29

More examples

• Loops are one of the main determinants of a program’s complexity

• for (int i = 0; i < n; i++) {
 ...
}

• for (int i = n; i > 0; i/=2) {
 ...
}

• for (int i = 0; i*i < n; i++) {
 ...
}

30

More examples

• for (int i = 0; i < n; i++) {

 for (int j = 0; j < n; j++) {

 ...

 }

 }

• for (int i = n; i > 0; i/=2) {

 for (int j = 0; j < n; j++) {

 ...

 }

 }

31

Real-world Consideration

• Your program will only perform as well as your design
• Constant factors can still play a part

• Suppose you have two algorithms…
• Algorithm A) 1,000,000n → O(n)

• Algorithm B) 2 n2 → O(n2)

• Which one is better?
• It depends

32

	Slide 1: CS 162 Intro to Computer Science II
	Slide 2: Odds and Ends
	Slide 3: Today’s topic(s)
	Slide 4: In class activity
	Slide 5: Pros and Cons of Singly Linked List
	Slide 6: Today’s topic(s)
	Slide 7: Final Exam
	Slide 8: Coverage
	Slide 9: Topics
	Slide 10: Study Guide
	Slide 11: Winter 2023 Exam Review
	Slide 12: You have learned MANY things from CS 162
	Slide 13: You have learned MANY things from CS 162
	Slide 14: Be Confident…
	Slide 15: Final Remarks…
	Slide 16: Final Remarks…
	Slide 17: Assignment 4 Q&A
	Slide 18: *Additional topic(s)
	Slide 19: How to compare/describe algorithms
	Slide 20: Complexity Analysis
	Slide 21: Big O
	Slide 22: Big O
	Slide 23: Big O
	Slide 24: Common growth order functions
	Slide 25: Common growth order functions
	Slide 26: Big O
	Slide 27: Big O example
	Slide 28: Determining a program’s complexity
	Slide 29: Dominant components
	Slide 30: More examples
	Slide 31: More examples
	Slide 32: Real-world Consideration

