CS 162
Intro to Computer Science |l

Lecture 4
Pointers
Memory Model
1/22/24

) Oregon State

Odds and Ends

* Design 1 past due, expected grades back by this Friday

Lecture Topics:

* Pointers
* Pointers vs. references

* Memory Model
* Dynamic Arrays

/. VDJVL-Q /Comll'l’imt

2 N AL

C/C++ Pointers P type QL

* Pointers == variables that hold memory addressesZ:. o dglr l <

e Variable declaration: int a = 5; Zoy, = pX |0
* Creates a variable on the stack of size int with the value 5 A

* Pointer declaration: int ™Mb = &a; / Ao

* Creates a pointer variable on the stack which can hold an address of an int and sets the
value of the pointer (the address the pointer points to) to the address of a

* Dereferencing Pointer: cout << *b << endl;
 Dereference: access the value stored in the memory address held by a pointer
* Will print the value stored at the address which b points to

* Every pointer points data of a specific data type

C++ Pointers

vold swap (int *,
int main () |
int a = 5, b =
swap (&a, &b);

cout << Y“a: 7" << a << Y“p:

J

int *);

10;

int *y)

vold swap (int *x,
int temp = *x;
*x o= *y;
*y o= temp;

—

{

144 << b;

a/;/ 10

Addrl &a

b
10 5,

Addr2 &

*X

"Addrl

Addr3 &x

*y

Yy
Addr2

Addr4 &y

Pointer and References Cheat Sheet
. &

 If used in a declaration (which includes function parameters), it creates and
initializes the reference.

 Ex. void fun (int &p); //p will refer to an argument that is an int by implicitly using *p
(dereference) for p

* Ex. int &p=a; //p will refer to an int, a, by implicitly using *p for p

 |If used outside a declaration, it means “address of”

* Ex. ptr=&a; //fetches the address of a (only used as rvalue!!!) and store the address in ptr.
(ptr is a pointer variable)

Pointer and References Cheat Sheet

o Xk

* If used in a declaration (which includes function parameters), it creates the
pointer.

* Ex.|int*p; //p will hold an address to where an int is stored

* If used outside a declaration, it dereferences the pointer
« Ex. *p=3; //goes to the address stored in p and stores a value
* Ex. cout << *p; //goes to the address stored in p and fetches the value

* Check point: How to separate the following into two statements?

int *p = &a; //declare an int pointer and initialize it to &a

ot KPS |
(O xp=aa \@/P:7&&’

fht .8 :la/"
mt XpP == X}
AR Fo {D_l_— R ‘3 ;
* What if you made a pointer (p2) that points to a pointer (p) that
points to an int (x)? P2
. . |&p
* What would the picture look like?
* Write the code for this picture.

Exercise: Pointers vs. References

* Can you make this same picture for references?
 What if you had two references, r and r2?

& and * Summary

e &<variable> evaluates to the “address-of” <variable>

* *<pointer> dereference the <pointer>
* (data at the address given by <pointer>)

* & and * are inverse operations
e &value = address
* *address = value
* *(&value) 2 value

Pointer Summary

e To summarize:

 We can declare pointer variables to store addresses (not data) using the syntax T*
where T is some type (e.g. int *p)

* We can get the address of some variable using the & operator (e.g. &x, &y)
* Most often, this would then be assigned to a pointer variable (e.g. p = &x)

 We can dereference a pointer (i.e. follow a pointer) to get the data from the
address it stores by using the * operator (e.g. cout << *p << endl)

* We can change the address the pointer stores to have it reference some other
variable (e.g. p = &z)

10

Lecture Topics:

* Pointers (cont.)
 Pointer vs. Reference

* Memory Model
* Dynamic Arrays

11

Program Memory

* |n a C++ program, there are two distinct areas of memory in which we can store
data, the stack and the heap.

e Stack — a limited-size chunk of the larger blob of system memory
* Heap — comprises essentially all the rest of system memory

* The stack and the heap grows towards each other

12

Stack

e Stack is small (general 8 MB)
* |f running out of stack memory = program crash (stack overflow)

e Stack memory is allocated in contiguous block during compile time
* Known as static memory

 Stores global/local variables, constants, and values declared in a program’s
functions

* Functions have their own stack frame
 When a function is called (in use), it is pushed onto the stack

* When a function ends, the stack frame collapses and cleans/frees up the
memory for you (automatically)

13

Heap

Heap is larger (determined by the size of RAM)

Heap memory is allocated in random order during run time
 Known as dynamic memory

Allocated with pointers and the new operator, i.e.,
* int *p = new int; //new returns an address on the heap

Dynamic memory does not disappear when the function ends as they are on the
heap and not the function stack

Can run out of heap space = heap overflow!

Must manually free (delete) heap memory after used, otherwise memory leaks
* delete p;

14

Demo: Stack vs. Heap Memory

Lecture Topics:

* Dynamic array

16

Dynamic Array Motivation

* Q1: We want to allocate an array of integers, but | don’t know the size until the
user inputs it. What size should | use when declaring my array?
e int numbers[??];

* Note: int numbers [var] is notsupported by all C/C++ compilers and considered bad
practice!

* Q2: What if we need that array to KEEP ALIVE after our function ends?

* Both questions are solved with dynamic memory (aka. runtime memory)

17

1D Dynamic Array

* Creation:
* Int *arr = new 1int [5];
* Deletion
e delete [] arr; //check memory leaks using valgrind

Passing 1D dynamic array into function:

 Same as 1D static array, i.e., pass the pointer
volid pass ldarray(int *a) {..}

OR

volid pass ldarray(int al[]) {..}

* Function call: pass 1darray(arr);

* Demo...

18

Static vs. Dynamic 1-D arrays...

Pod =

L

int main() {
int stack array[16];

return @;

int main() {
int *heap array = new int

return @,

[1e];

Stack

main

array

a 1 2 3 4 3 = Fi 8 9
stack_array int | int | int|int|int|int|int|int|int|int

F S B IS P (P P IS I S

Stack Heap

main array

0 1 2 3

heap arra pointer to int int | int | int | int
p_array 2 12 |2 |2

int

Heap

7 8§ 9
int
?

int
?

int
?

19

Exercise

* How do | initialize an int array in a function?
* How can | print the contents of the int array in a function?

* How would | create a dynamic int array using a function? (3 ways)
e int* create_arrayl(int size);
* void create_array2(int *&array, int size);
e void create_array3(int ** array, int size);

Create 1-D Array in Functions

int

array = create_1ldarray(size);

}

int *create_1darray(int n) {

}

main() {
int *array;

int *a = new int [n];
return a;

Stack Heap
main array
0 1 2 4 3 5 7 B 9
size int int [int | int | int | int | int | int | int | int | int
10 2?2?22 |2 2?2?27
pointer to int
array |,
create ldarray{int
int
]
10
poipter to int
d
Stack Heap
main array
] i 2 3 4 5 & 7 g 9
int | int | int| int | int|int| int|int| int
Pl

. int int
SlZe
10 ?
pointer nt
array

Create 1-D Array in Functions

int main() {
int *array;

create_1darray(&array, size);

}

void create_1darray(int **a, int n) {
*a =new int [n];

main

size

array

Stack

int
10

ointer toint

create_ldarray(int®*, int)

pdinter to int™

d
int

n
10

Stack
main
i int
sSlZe

array

int

Heap
array
0 1 z 3 4 5 & 7 g 9
‘int int | int | int | int | int | int | int | int | int
|? A I S " I I I P I
i 3 4 5 & 7 E 9
int | int| int | int | int| int | int | int
P22

Create 1-D Array in Functions

Stack Heap
int main() { main E.Er'-ra?'_ 2 3 4 3 5 F B 9
. * . . int ‘int int | int| int | int | int | int | int | int | int
Int “array; *12€ 110 2|2 (2|2]2 (22|27 |2
ointer toint
array
create_1ldarray(array, size);
create_ldarray(int®*&, int)
pdinter to int™
} a
. . . int
void create_1darray(int *&a, int n) { N 10
a =new int [n]; Stack Heap
} main array
o i 2 k- 4 =] & 7 B 9
. int int| int | int | int | int | int | int | int | int | int
S1ee 202020220202 |2 |22
array

23

Static vs. Dynamic 2-D arrays...

Stack Heap

int main() {
int array stack[2][3];

main

fod =

array
a0 (01|02
int | int | int

' 4 return @, ? |7 |?
5

L

array_stack
} 1,0 (1,1 | 1,2

int | int | int

Stack Heap

main array
o 1

1] i ointer to int= 3 i
Loint main() { array_heap p/)'/—TPO'"tE”O =
int **array heap = new int* [2]; [

pointer to int

) _ /
3 for(int 1 = @; 1 < 2; 1++)

4 array_heap[1i] = new 1int [3];

5

6 return @;

24

Jagged Arrays

int *array[2];
array[0] = new int[3];
array[1] = new int[2];

array[0]

e

array

array[1]

Stack Heap
main array
] 1 2
array int | int | int
’ : ? |? |?
array po'iEr’to/inL‘mm
.‘H“"‘--..___
array
o 1
int | int
7|7
array[0][0] array[0][1] array[0][2]

I - N

array[1][0] array[1][1]

25

Passing a 2-D Array (Dynamic)

int main() {
int **array;

pass_2darray(array, row, col);

}

void pass_2darray(int *af[], int row, int col) {
cout << “Array at zero: ” << a[0][0] << endl;

}

OR

void pass_2darray(int **a, int row, int col) {
cout << “Array at zero: ” << a[0][0] << end];

26

Create 2-D Array in Functions

int main() {
int **array;

array = create_2darray(rows, cols);

}

int **create_2darray(int r, int c) {

int **a;

a = new int*[r];
for(int i=0; i<r; i++)

ali] = new int[c];
return a;

}

27

Create 2-D Array in Functions

int main() {

int **array;

create_2darray(&array, rows, cols);

}

void create_2darray(int ***a, int r, int{c) {
a = new int[r];

for(int i=0; i<r; i++)

(*a)[i] = new int[c];

28

Create 2-D Array in Functions

int main() {

int **array;

create_2darray(array, rows, cols);

}

void create_2darray(int **&a, int r, int ¢) {
a = new int*[r];
for(int i=0; i<r; i++)

ali] = new int[c];

29

How does freeing memory work in 2D arrays?

int *r[5], **s;

for(int i=0; 1 < 5; i++)
r[i]=new int;

for(int i=0; 1 < 5; i++)
delete r[i];

for(int i=0; i < 5; i++)
r[i]=new int[5];

for(int i=0; i < 5; i++)
delete [] r[i];

30

s=new int*[5];
for(int i=0; 1 < 5;
i++)

s[i]=new int[5];
for(int i=0; 1 < 5;
i++)

delete [] s[i];
delete [] s;

	Slide 1: CS 162 Intro to Computer Science II
	Slide 2: Odds and Ends
	Slide 3: Lecture Topics:
	Slide 4: C/C++ Pointers
	Slide 5
	Slide 6: Pointer and References Cheat Sheet
	Slide 7: Pointer and References Cheat Sheet
	Slide 8: Exercise: Pointers vs. References
	Slide 9: & and * Summary
	Slide 10: Pointer Summary
	Slide 11: Lecture Topics:
	Slide 12: Program Memory
	Slide 13: Stack
	Slide 14: Heap
	Slide 15: Demo: Stack vs. Heap Memory
	Slide 16: Lecture Topics:
	Slide 17: Dynamic Array Motivation
	Slide 18: 1D Dynamic Array
	Slide 19: Static vs. Dynamic 1‐D arrays…
	Slide 20: Exercise
	Slide 21: Create 1-D Array in Functions
	Slide 22: Create 1-D Array in Functions
	Slide 23: Create 1-D Array in Functions
	Slide 24: Static vs. Dynamic 2‐D arrays…
	Slide 25: Jagged Arrays
	Slide 26: Passing a 2-D Array (Dynamic)
	Slide 27: Create 2-D Array in Functions
	Slide 28: Create 2-D Array in Functions
	Slide 29: Create 2-D Array in Functions
	Slide 30: How does freeing memory work in 2D arrays?

