
CS 162
Intro to Computer Science II

Lecture 4

Pointers

Memory Model

1/22/24

1

Odds and Ends

• Design 1 past due, expected grades back by this Friday

2

Lecture Topics:

• Pointers
• Pointers vs. references

• Memory Model

• Dynamic Arrays

3

C/C++ Pointers
• Pointers == variables that hold memory addresses

• Variable declaration: int a = 5;
• Creates a variable on the stack of size int with the value 5

• Pointer declaration: int *b = &a;
• Creates a pointer variable on the stack which can hold an address of an int and sets the

value of the pointer (the address the pointer points to) to the address of a

• Dereferencing Pointer: cout << *b << endl;
• Dereference: access the value stored in the memory address held by a pointer

• Will print the value stored at the address which b points to

• Every pointer points data of a specific data type

4

void swap(int *, int *);

int main() {

 int a = 5, b = 10;

 swap(&a, &b);

 cout << “a: ” << a << “b: ” << b;

}

void swap(int *x, int *y) {

 int temp = *x;

 *x = *y;

 *y = temp;

}

Addr1

Addr2
Addr4 &y

y

10
Addr2

&a

a

5

&b

b

Addr1
Addr3 &x

x
*x

*y

10

5

C++ Pointers

5

Pointer and References Cheat Sheet
• &

• If used in a declaration (which includes function parameters), it creates and
initializes the reference.
• Ex. void fun (int &p); //p will refer to an argument that is an int by implicitly using *p

(dereference) for p

• Ex. int &p=a; //p will refer to an int, a, by implicitly using *p for p

• If used outside a declaration, it means “address of”
• Ex. ptr=&a; //fetches the address of a (only used as rvalue!!!) and store the address in ptr.

(ptr is a pointer variable)

6

Pointer and References Cheat Sheet
• *

• If used in a declaration (which includes function parameters), it creates the
pointer.
• Ex. int *p; //p will hold an address to where an int is stored

• If used outside a declaration, it dereferences the pointer
• Ex. *p = 3; //goes to the address stored in p and stores a value

• Ex. cout << *p; //goes to the address stored in p and fetches the value

• Check point: How to separate the following into two statements?
int *p = &a; //declare an int pointer and initialize it to &a

7

Exercise: Pointers vs. References

• What if you made a pointer (p2) that points to a pointer (p) that
points to an int (x)?
• What would the picture look like?

• Write the code for this picture.

• Can you make this same picture for references?
• What if you had two references, r and r2?

8

& and * Summary
• &<variable> evaluates to the “address-of” <variable>

• *<pointer> dereference the <pointer>
• (data at the address given by <pointer>)

• & and * are inverse operations
• &value→ address

• *address→ value

• *(&value) → value

9

Pointer Summary
• To summarize:

• We can declare pointer variables to store addresses (not data) using the syntax T*
where T is some type (e.g. int *p)

• We can get the address of some variable using the & operator (e.g. &x, &y)
• Most often, this would then be assigned to a pointer variable (e.g. p = &x)

• We can dereference a pointer (i.e. follow a pointer) to get the data from the
address it stores by using the * operator (e.g. cout << *p << endl)

• We can change the address the pointer stores to have it reference some other
variable (e.g. p = &z)

10

Lecture Topics:

• Pointers (cont.)
• Pointer vs. Reference

• Memory Model

• Dynamic Arrays

11

Program Memory
• In a C++ program, there are two distinct areas of memory in which we can store

data, the stack and the heap.
• Stack – a limited-size chunk of the larger blob of system memory

• Heap – comprises essentially all the rest of system memory

• The stack and the heap grows towards each other

12

Stack
• Stack is small (general 8 MB)

• If running out of stack memory → program crash (stack overflow)

• Stack memory is allocated in contiguous block during compile time
• Known as static memory

• Stores global/local variables, constants, and values declared in a program’s
functions

• Functions have their own stack frame

• When a function is called (in use), it is pushed onto the stack

• When a function ends, the stack frame collapses and cleans/frees up the
memory for you (automatically)

13

Heap
• Heap is larger (determined by the size of RAM)

• Heap memory is allocated in random order during run time
• Known as dynamic memory

• Allocated with pointers and the new operator, i.e.,
• int *p = new int; //new returns an address on the heap

• Dynamic memory does not disappear when the function ends as they are on the
heap and not the function stack

• Can run out of heap space → heap overflow!

• Must manually free (delete) heap memory after used, otherwise memory leaks
• delete p;

14

Demo: Stack vs. Heap Memory

15

Lecture Topics:

• Dynamic array

16

Dynamic Array Motivation

• Q1: We want to allocate an array of integers, but I don’t know the size until the
user inputs it. What size should I use when declaring my array?
• int numbers[??];

• Note: int numbers [var] is not supported by all C/C++ compilers and considered bad
practice!

• Q2: What if we need that array to KEEP ALIVE after our function ends?

• Both questions are solved with dynamic memory (aka. runtime memory)

17

1D Dynamic Array

• Creation:
• int *arr = new int [5];

• Deletion:
• delete [] arr; //check memory leaks using valgrind

• Passing 1D dynamic array into function:
• Same as 1D static array, i.e., pass the pointer
void pass_1darray(int *a) {…}

OR
void pass_1darray(int a[]) {…}

• Function call: pass_1darray(arr);

• Demo… 18

Static vs. Dynamic 1‐D arrays…

19

Exercise

• How do I initialize an int array in a function?

• How can I print the contents of the int array in a function?

• How would I create a dynamic int array using a function? (3 ways)
• int* create_array1(int size);

• void create_array2(int *&array, int size);

• void create_array3(int ** array, int size);

20

Create 1-D Array in Functions
int main() {

 int *array;

 …

 array = create_1darray(size);

 …

}

int *create_1darray(int n) {

 int *a = new int [n];

 return a;

}

21

Create 1-D Array in Functions

}

int main() {

int *array;

…

create_1darray(&array, size);

…

}

void create_1darray(int **a, int n) {

*a = new int [n];

22

Create 1-D Array in Functions

}

int main() {

int *array;

…

create_1darray(array, size);

…

}

void create_1darray(int *&a, int n) {

a = new int [n];

23

Static vs. Dynamic 2‐D arrays…

24

Jagged Arrays

int *array[2];

array[0] = new int[3];

array[1] = new int[2];

25

array[0][0] array[0][1] array[0][2]

array[1][0] array[1][1]array[1]

array[0]

array

Passing a 2-D Array (Dynamic)
int main() {

int **array;

…

pass_2darray(array, row, col);

…

}

void pass_2darray(int *a[], int row, int col) {

cout << “Array at zero: ” << a[0][0] << endl;

}

OR

void pass_2darray(int **a, int row, int col) {

cout << “Array at zero: ” << a[0][0] << endl;

}

26

Create 2-D Array in Functions
int main() {

 int **array;

 …

 array = create_2darray(rows, cols);

 …

}

int **create_2darray(int r, int c) {

 int **a;

 a = new int*[r];

 for(int i=0; i<r; i++)

 a[i] = new int[c];

 return a;

}

27

Create 2-D Array in Functions

}

int main() {

int **array;

…

create_2darray(&array, rows, cols);

…

}

void create_2darray(int ***a, int r, int c) {

a = new int[r];

for(int i=0; i<r; i++)

(*a)[i] = new int[c];

28

Create 2-D Array in Functions

}

int main() {

int **array;

…

create_2darray(array, rows, cols);

…

}

void create_2darray(int **&a, int r, int c) {

a = new int*[r];

for(int i=0; i<r; i++)

a[i] = new int[c];

29

How does freeing memory work in 2D arrays?

int *r[5], **s;

for(int i=0; i < 5; i++)

r[i]=new int;

for(int i=0; i < 5; i++)

delete r[i];

30

for(int i=0; i < 5; i++)
 r[i]=new int[5];
for(int i=0; i < 5; i++)
 delete [] r[i];

s=new int*[5];
for(int i=0; i < 5;
i++)
 s[i]=new int[5];
for(int i=0; i < 5;
i++)
 delete [] s[i];
delete [] s;

	Slide 1: CS 162 Intro to Computer Science II
	Slide 2: Odds and Ends
	Slide 3: Lecture Topics:
	Slide 4: C/C++ Pointers
	Slide 5
	Slide 6: Pointer and References Cheat Sheet
	Slide 7: Pointer and References Cheat Sheet
	Slide 8: Exercise: Pointers vs. References
	Slide 9: & and * Summary
	Slide 10: Pointer Summary
	Slide 11: Lecture Topics:
	Slide 12: Program Memory
	Slide 13: Stack
	Slide 14: Heap
	Slide 15: Demo: Stack vs. Heap Memory
	Slide 16: Lecture Topics:
	Slide 17: Dynamic Array Motivation
	Slide 18: 1D Dynamic Array
	Slide 19: Static vs. Dynamic 1‐D arrays…
	Slide 20: Exercise
	Slide 21: Create 1-D Array in Functions
	Slide 22: Create 1-D Array in Functions
	Slide 23: Create 1-D Array in Functions
	Slide 24: Static vs. Dynamic 2‐D arrays…
	Slide 25: Jagged Arrays
	Slide 26: Passing a 2-D Array (Dynamic)
	Slide 27: Create 2-D Array in Functions
	Slide 28: Create 2-D Array in Functions
	Slide 29: Create 2-D Array in Functions
	Slide 30: How does freeing memory work in 2D arrays?

