
CS 162
Intro to Computer Science II

Lecture 5

Memory Model

Dynamic arrays

1/24/24

1

Pointer Summary
• To summarize:

• We can declare pointer variables to store addresses (not data) using the syntax T*
where T is some type (e.g. int *p)

• We can get the address of some variable using the & operator (e.g. &x, &y)
• Most often, this would then be assigned to a pointer variable (e.g. p = &x)

• We can dereference a pointer (i.e. follow a pointer) to get the data from the
address it stores by using the * operator (e.g. cout << *p << endl)

• We can change the address the pointer stores to have it reference some other
variable (e.g. p = &z)

2

Lecture Topics:

• Memory Model

• Dynamic array

3

Program Memory
• In a C++ program, there are two distinct areas of memory in which we can store

data, the stack and the heap.
• Stack – a limited-size chunk of the larger blob of system memory

• Heap – comprises essentially all the rest of system memory

• The stack and the heap grows towards each other

4

Stack
• Stack is small (general 8 MB)

• If running out of stack memory → program crash (stack overflow)

• Stack memory is allocated in contiguous block during compile time
• Known as static memory

• Stores global/local variables, constants, and values declared in a program’s
functions

• Functions have their own stack frame

• When a function is called (in use), it is pushed onto the stack

• When a function ends, the stack frame collapses and cleans/frees up the
memory for you (automatically)

5

Heap
• Heap is larger (determined by the size of RAM)

• Heap memory is allocated in random order during run time
• Known as dynamic memory

• Allocated with pointers and the new operator, i.e.,
• int *p = new int; //new returns an address on the heap

• Dynamic memory does not disappear when the function ends as they are on the
heap and not the function stack

• Can run out of heap space → heap overflow!

• Must manually free (delete) heap memory after used, otherwise memory leaks
• delete p;

6

Demo: Stack vs. Heap Memory

7

Lecture Topics:

• Dynamic array

8

Dynamic Array Motivation

• Q1: We want to allocate an array of integers, but I don’t know the size until the
user inputs it. What size should I use when declaring my array?
• int numbers[??];

• Note: int numbers [var] is not supported by all C/C++ compilers and considered bad
practice!

• Q2: What if we need that array to KEEP ALIVE after our function ends?

• Both questions are solved with dynamic memory (aka. runtime memory)

9

1D Dynamic Array

• Creation:
• int *arr = new int [5];

• Deletion:
• delete [] arr; //check memory leaks using valgrind

• Passing 1D dynamic array into function:
• Same as 1D static array, i.e., pass the pointer
void pass_1darray(int *a) {…}

OR
void pass_1darray(int a[]) {…}

• Function call: pass_1darray(arr);

• Demo… 10

Static vs. Dynamic 1‐D arrays…

11

Exercise

• How do I initialize an int array in a function?

• How can I print the contents of the int array in a function?

• How would I create a dynamic int array using a function? (3 ways)
• int* create_array1(int size);

• void create_array2(int *&array, int size);

• void create_array3(int ** array, int size);

12

Create 1-D Array in Functions
int main() {

 int *array;

 …

 array = create_1darray(size);

 …

}

int *create_1darray(int n) {

 int *a = new int [n];

 return a;

}

13

Create 1-D Array in Functions

}

int main() {

int *array;

…

create_1darray(&array, size);

…

}

void create_1darray(int **a, int n) {

*a = new int [n];

14

Create 1-D Array in Functions

}

int main() {

int *array;

…

create_1darray(array, size);

…

}

void create_1darray(int *&a, int n) {

a = new int [n];

15

Static vs. Dynamic 2‐D arrays…

16

Jagged Arrays

int *array[2];

array[0] = new int[3];

array[1] = new int[2];

17

array[0][0] array[0][1] array[0][2]

array[1][0] array[1][1]array[1]

array[0]

array

Passing a 2-D Array (Dynamic)
int main() {

int **array;

…

pass_2darray(array, row, col);

…

}

void pass_2darray(int *a[], int row, int col) {

cout << “Array at zero: ” << a[0][0] << endl;

}

OR

void pass_2darray(int **a, int row, int col) {

cout << “Array at zero: ” << a[0][0] << endl;

}

18

Create 2-D Array in Functions
int main() {

 int **array;

 …

 array = create_2darray(rows, cols);

 …

}

int **create_2darray(int r, int c) {

 int **a;

 a = new int*[r];

 for(int i=0; i<r; i++)

 a[i] = new int[c];

 return a;

}

19

Create 2-D Array in Functions

}

int main() {

int **array;

…

create_2darray(&array, rows, cols);

…

}

void create_2darray(int ***a, int r, int c) {

a = new int[r];

for(int i=0; i<r; i++)

(*a)[i] = new int[c];

20

Create 2-D Array in Functions

}

int main() {

int **array;

…

create_2darray(array, rows, cols);

…

}

void create_2darray(int **&a, int r, int c) {

a = new int*[r];

for(int i=0; i<r; i++)

a[i] = new int[c];

21

How does freeing memory work in 2D arrays?

int *r[5], **s;

for(int i=0; i < 5; i++)

r[i]=new int;

for(int i=0; i < 5; i++)

delete r[i];

22

for(int i=0; i < 5; i++)
 r[i]=new int[5];
for(int i=0; i < 5; i++)
 delete [] r[i];

s=new int*[5];
for(int i=0; i < 5;
i++)
 s[i]=new int[5];
for(int i=0; i < 5;
i++)
 delete [] s[i];
delete [] s;

Lecture Topics:

• Structs

23

Structures
• Data Structures so far…

• Variables

• Arrays

• What if we want mixed types?
• Record: name, age, weight, etc. of a person

• Use struct type

24

Structs

• User defined composite data type

• Container which holds many variables of different types

• Can be used as any other data type with some extra features

• The instances created by such data type are called objects (items)

25

How to define a struct?
// definition of a Book struct

struct Book {

int pages;

string title; // a string inside the struct

int num_authors;

string* authors; // a pointer to a string

};

// declare a Book object (item)

Book text_book;

// declare and initialize at the same time

Book b1 = {.pages = 150, .title = “Harry Potter”, .num_authors = 2};

//or

Book b1 = {150, “Harry Potter”, 2};

Note: in order, non-skip
26

Working with structs

• Can use the same way as any other type

• The dot operator(.) allows us to access the member variables

Book bookshelf[10];

for (int i = 0; i < 10; ++i){

bookshelf[i].num_pages = 100;

bookshelf[i].title = “Harry Potter”;

bookshelf[i].num_authors = 2;

bookshelf[i].authors = new string[2];

}

27

Using pointers with structs
Book bk1; //statically allocated

Book* bk_ptr = &bk1;

//dereference the pointer and access the data member

(*bk_ptr).title = “Harry Potter”;

//a shortcut to dereference the pointer to the struct

// the arrow (->) operator

bk_ptr -> title = “The Cars”;

bk_ptr -> num_pages = 259;

//this works for objects on the heap as well

Book* bk_ptr2 = new Book;

bk_ptr2 -> title = “Transformers”;

28

Demo

29

	Slide 1: CS 162 Intro to Computer Science II
	Slide 2: Pointer Summary
	Slide 3: Lecture Topics:
	Slide 4: Program Memory
	Slide 5: Stack
	Slide 6: Heap
	Slide 7: Demo: Stack vs. Heap Memory
	Slide 8: Lecture Topics:
	Slide 9: Dynamic Array Motivation
	Slide 10: 1D Dynamic Array
	Slide 11: Static vs. Dynamic 1‐D arrays…
	Slide 12: Exercise
	Slide 13: Create 1-D Array in Functions
	Slide 14: Create 1-D Array in Functions
	Slide 15: Create 1-D Array in Functions
	Slide 16: Static vs. Dynamic 2‐D arrays…
	Slide 17: Jagged Arrays
	Slide 18: Passing a 2-D Array (Dynamic)
	Slide 19: Create 2-D Array in Functions
	Slide 20: Create 2-D Array in Functions
	Slide 21: Create 2-D Array in Functions
	Slide 22: How does freeing memory work in 2D arrays?
	Slide 23: Lecture Topics:
	Slide 24: Structures
	Slide 25: Structs
	Slide 26: How to define a struct?
	Slide 27: Working with structs
	Slide 28: Using pointers with structs
	Slide 29: Demo

