
CS 162
Intro to Computer Science II

Lecture 7

Structs (cont.)

File Separation & Compilation

Makefile

1/29/24

1

Odds and Ends

• Lab 4 posted

• Assignment 2 will be posted by today

• Sign up for demos if you haven’t already!

2

Lecture Topics:

• Structs (cont.)

3

Recap: How to define a struct?
// definition of a Book struct

struct Book {

int pages;

string title; // a string inside the struct

int num_authors;

string* authors; // a pointer to a string

};

// declare a Book object (item)

Book text_book;

// declare and initialize at the same time

Book b1 = {.pages = 150, .title = “Harry Potter”, .num_authors = 2};

//or

Book b1 = {150, “Harry Potter”, 2};

Note: in order, non-skip
4

Working with structs

• Can use the same way as any other type

• The dot operator(.) allows us to access the member variables

Book bookshelf[10];

for (int i = 0; i < 10; ++i){

bookshelf[i].num_pages = 100;

bookshelf[i].title = “Harry Potter”;

bookshelf[i].num_authors = 2;

bookshelf[i].authors = new string[2];

}

5

Using pointers with structs
Book bk1; //statically allocated

Book* bk_ptr = &bk1;

//dereference the pointer and access the data member

(*bk_ptr).title = “Harry Potter”;

//a shortcut to dereference the pointer to the struct

// the arrow (->) operator

bk_ptr -> title = “The Cars”;

bk_ptr -> num_pages = 259;

//this works for objects on the heap as well

Book* bk_ptr2 = new Book;

bk_ptr2 -> title = “Transformers”;

6

Demo

7

Today’s Topics:

• File Separation
• Header Guard

• Compilation and Makefile

• Begin File I/O

8

Why do we separate files?

• Programs can get very large, making them difficult to navigate
• Real-life code bases can be millions of lines. Imagine how hard writing code in a 1 million-line

file would be…

• Reuse functions in many applications

• Compiling code can take a long time
• The time increases as the code grows

9

How do we separate files?

• Different ways to separate files
• By classes

• By common functionality

• Different file types
• Interface file (.h): description of all reusable parts

• Prototypes for reusable functions

• Struct (and later, class) definitions

• Important constant values

• Implementation file (.cpp): actual implementation of the interface
• Definitions of functions (function body) for all prototypes in corresponding .h

• Driver file (.cpp): the part that you execute to accomplish some specific goal
• Where main() lives with all relevant libraries included

10

File Separation Demo

11

Food for thought …

• What happens if you try to define the same variable or struct more than once?

int global_var;

char global_var;

int main() {

// do something

return 0;

}

12

When could this happen?
• Suppose that the book structure is defined inside a header file: book.h

• Imagine that the book.h file is included in the main file

• Now suppose we include another file collections.h which in turn includes book.h

13

// book.h

struct book {

 int pages;

 string title;

 int num_authors;

 string* authors;

};

When could this happen?
• Suppose that the book structure is defined inside a header file: book.h

• Imagine that the book.h file is included in the main file

• Now suppose we include another file collections.h which in turn includes book.h

14

How to avoid this problem?

• Use Header Guards
• Conditional preprocessor directives

• Recall that these lines starting with “#”

• This strategy is standard in header files (.h)
// book.h

#ifndef BOOK_H

#define BOOK_H

struct book {

int pages;

string title;

int num_authors;

string* authors;

};

#endif

15

Today’s Topics:

• Compilation and Makefile

16

Compilation

• Process of compilation
• Preprocessing: expands all preprocessors like #include, #define, #ifndef, etc. into

pure C++ code

• Compilation: parses the pure C++ code into assembly code

• Assembly: translates the assembly code into machine code
• Object files produced

• Linking: link all of the object files produced by the assembler and produce the final output of
compilation, which is often an executable file

*Happen behind the scene when you run g++

17

Compilation – can be interrupted

• Very useful when interrupting after assembly but before linking
• Produce one or more object files but no executable

• How? Add –c option, e.g:

g++ -c book.cpp

• This would produce an object file, book.o, if no syntax errors in book.cpp

• Benefits of stopping before linking
• Only compile a subset of your program (files that have changed)

• The rest of your program doesn’t need to be re-compiled

• Greatly speed up the whole compilation process

• Help debugging
• Tell if that is a linking issue or a syntax error

18

In real practice…
• Suppose we have a program that’s factored into the following files:

• Interface/implementation:

• book.h, book.cpp

• bookshelf.h, bookshelf.cpp

• library.h, library.cpp

• Driver:

• prog.cpp

• Preprocess, compile, and assemble all implementation files into object files
g++ -c book.cpp

g++ -c bookshelf.cpp

g++ -c library.cpp

• Produce executable by compiling the driver and linking it together with the object files
produced by the previous step:

g++ prog.cpp book.o bookshelf.o library.o –o prog

19

In real practice… (cont.)

• Find a bug in book.cpp. Make changes to that file and recompile it, stopping before linking:

g++ -c book.cpp

• Recompile the driver and link it with the new book.o and all of the old object files:

g++ prog.cpp book.o bookshelf.o library.o –o prog

• This ends up skipping the compilation process on the rest of our
implementation files → SAVES TIME!!!

• But need a lot of different g++ commands to compile our program…

20

Makefile
• Make – A Unix utility helps automate the entire compilation process

• Relies on a specification file: makefile

• A makefile may have multiple rules/commands, each of which consists of 3 things:
• Target: the output file it is producing

• Dependencies: components (files or other targets) this particular target depends
• Optional

• Commands: specify how to transform the dependencies into the target (e.g. g++ calls)

• General structure:

target: dependency dependency …

command

• Note: The commands for a target are only run if one (or more) of the dependencies has been
modified
• Files that haven’t changed won’t be recompiled

21

Makefile (cont.)
• A basic makefile for our project above might look like this:

prog: prog.cpp book.o bookshelf.o library.o

g++ prog.cpp book.o bookshelf.o library.o –o prog

book.o: book.cpp book.h

g++ -c book.cpp

bookshelf.o: bookshelf.cpp bookshelf.h

g++ -c bookshelf.cpp

library.o: library.cpp library.h

g++ -c library.cpp

To run the whole compilation, simply type: make

22

More makefile
• Other things we can do in makefile:

• Use variables to make it easier to control
• Add a target to clean up our working directory

CC=g++

exe_file=prog

$(exe_file): prog.cpp book.o bookshelf.o library.o
$(CC) prog.cpp book.o bookshelf.o library.o –o $(exe_file)

book.o: book.cpp book.h
$(CC) -c book.cpp

bookshelf.o: bookshelf.cpp bookshelf.h
$(CC) -c bookshelf.cpp

library.o: library.cpp library.h
$(CC) -c library.cpp

clean:

rm –f *.o $(exe_file)

23

Makefile Demo…

24

Advanced makefile:
• Recall: How to compile our code with GDB (GNU Debugger)?

• Add –g flag, i.e. g++ -c struct.cpp -g

• How to incorporate this into our makefile?
CC = g++

exe_file = prog

$(exe_file): prog.cpp struct.o

$(CC) prog.cpp struct.o -o $(exe_file)

struct.o: struct.cpp struct.h

$(CC) -c struct.cpp

clean:

rm -f *.o $(exe_file)

25

	Slide 1: CS 162 Intro to Computer Science II
	Slide 2: Odds and Ends
	Slide 3: Lecture Topics:
	Slide 4: Recap: How to define a struct?
	Slide 5: Working with structs
	Slide 6: Using pointers with structs
	Slide 7: Demo
	Slide 8: Today’s Topics:
	Slide 9: Why do we separate files?
	Slide 10: How do we separate files?
	Slide 11: File Separation Demo
	Slide 12: Food for thought …
	Slide 13: When could this happen?
	Slide 14: When could this happen?
	Slide 15: How to avoid this problem?
	Slide 16: Today’s Topics:
	Slide 17: Compilation
	Slide 18: Compilation – can be interrupted
	Slide 19: In real practice…
	Slide 20: In real practice… (cont.)
	Slide 21: Makefile
	Slide 22: Makefile (cont.)
	Slide 23: More makefile
	Slide 24: Makefile Demo…
	Slide 25: Advanced makefile:

