
CS 162
Intro to Computer Science II

Lecture 9

Compilation & Makefile

Begin File Input/Output

2/2/24

1

Odds and Ends

• Due Sunday midnight:
• Design 2 doc

• Design 2 ex.

• Quiz 2 (unlock after today’s lecture)

2

How do we separate files?

• Different ways to separate files
• By classes

• By common functionality

• Different file types
• Interface file (.h): description of all reusable parts

• Prototypes for reusable functions

• Struct (and later, class) definitions

• Important constant values

• Implementation file (.cpp): actual implementation of the interface
• Definitions of functions (function body) for all prototypes in corresponding .h

• Driver file (.cpp): the part that you execute to accomplish some specific goal
• Where main() lives with all relevant libraries included

3

How to avoid this problem?

• Use Header Guards
• Conditional preprocessor directives

• Recall that these lines starting with “#”

• This strategy is standard in header files (.h)
// book.h

#ifndef BOOK_H

#define BOOK_H

struct book {

int pages;

string title;

int num_authors;

string* authors;

};

#endif

4

Today’s Topics:

• Compilation & Makefile

• Begin File I/O

5

Compilation

• Process of compilation
• Preprocessing: expands all preprocessors like #include, #define, #ifndef, etc. into

pure C++ code

• Compilation: parses the pure C++ code into assembly code

• Assembly: translates the assembly code into machine code
• Object files produced

• Linking: link all of the object files produced by the assembler and produce the final output of
compilation, which is often an executable file

*Happen behind the scene when you run g++

6

Compilation – can be interrupted

• Very useful when interrupting after assembly but before linking
• Produce one or more object files but no executable

• How? Add –c option, e.g:

g++ -c book.cpp

• This would produce an object file, book.o, if no syntax errors in book.cpp

• Benefits of stopping before linking
• Only compile a subset of your program (files that have changed)

• The rest of your program doesn’t need to be re-compiled

• Greatly speed up the whole compilation process

• Help debugging
• Tell if that is a linking issue or a syntax error

7

In real practice…
• Suppose we have a program that’s factored into the following files:

• Interface/implementation:

• book.h, book.cpp

• bookshelf.h, bookshelf.cpp

• library.h, library.cpp

• Driver:

• prog.cpp

• Preprocess, compile, and assemble all implementation files into object files
g++ -c book.cpp

g++ -c bookshelf.cpp

g++ -c library.cpp

• Produce executable by compiling the driver and linking it together with the object files
produced by the previous step:

g++ prog.cpp book.o bookshelf.o library.o –o prog

8

In real practice… (cont.)

• Find a bug in book.cpp. Make changes to that file and recompile it, stopping before linking:

g++ -c book.cpp

• Recompile the driver and link it with the new book.o and all of the old object files:

g++ prog.cpp book.o bookshelf.o library.o –o prog

• This ends up skipping the compilation process on the rest of our
implementation files → SAVES TIME!!!

• But need a lot of different g++ commands to compile our program…

9

Makefile
• Make – A Unix utility helps automate the entire compilation process

• Relies on a specification file: makefile

• A makefile may have multiple rules/commands, each of which consists of 3 things:
• Target: the output file it is producing

• Dependencies: components (files or other targets) this particular target depends
• Optional

• Commands: specify how to transform the dependencies into the target (e.g. g++ calls)

• General structure:

target: dependency dependency …

command

• Note: The commands for a target are only run if one (or more) of the dependencies has been
modified
• Files that haven’t changed won’t be recompiled

10

Makefile (cont.)
• A basic makefile for our project above might look like this:

prog: prog.cpp book.o bookshelf.o library.o

g++ prog.cpp book.o bookshelf.o library.o –o prog

book.o: book.cpp book.h

g++ -c book.cpp

bookshelf.o: bookshelf.cpp bookshelf.h

g++ -c bookshelf.cpp

library.o: library.cpp library.h

g++ -c library.cpp

To run the whole compilation, simply type: make

11

More makefile
• Other things we can do in makefile:

• Use variables to make it easier to control
• Add a target to clean up our working directory

CC=g++

exe_file=prog

$(exe_file): prog.cpp book.o bookshelf.o library.o
$(CC) prog.cpp book.o bookshelf.o library.o –o $(exe_file)

book.o: book.cpp book.h
$(CC) -c book.cpp

bookshelf.o: bookshelf.cpp bookshelf.h
$(CC) -c bookshelf.cpp

library.o: library.cpp library.h
$(CC) -c library.cpp

clean:

rm –f *.o $(exe_file)

12

Makefile Demo…

13

Advanced makefile:
• Recall: How to compile our code with GDB (GNU Debugger)?

• Add –g flag, i.e. g++ -c struct.cpp -g

• How to incorporate this into our makefile?
CC = g++ -g

exe_file = prog

$(exe_file): prog.cpp struct.o

$(CC) prog.cpp struct.o -o $(exe_file)

struct.o: struct.cpp struct.h

$(CC) -c struct.cpp

clean:

rm -f *.o $(exe_file)

14

Today’s Topics:

• File I/O Demo

• Intro to OOP

15

File I/O

• File input output

• Allows us to read and write data to files for long term storage

• General algorithm
1. Create file object

2. Open the file

3. Perform action on the file (read/write/etc.)

4. Close the file

16

File Stream Objects

#include <fstream> //input output file stream class

using namespace std;

int main() {

fstream f; //create a file stream object

ifstream fin; //create an input-only file stream

ofstream fout; //create an output-only file stream

return 0;

}

17

Open the file

int main() {

fstream f; //create the object

f.open (“file.txt”, ios::app); //open(const char* filename, mode)

return 0;

}

• Modes (default is input & output for fstream)

• ios::in → input: file open for reading

• ios::out → output: file open for writing

• ios::binary → binary: operations are performed in binary mode

• ios::ate → at end: output position starts at the end of the file

• ios::app → append: all output operations happen at the end of the file, appending to the existing
contents

• ios::trunc→ truncate: existing file contents are discarded

18

Open the file

int main() {

fstream f; //create the object

f.open (“file.txt”, ios::app); //open(const char* filename, mode)

return 0;

}

• Modes can be combined using the bitwise OR operator
• f.open (“file.txt”, ios::out | ios::app);

• Not all combination of modes are valid
• E.g. append and truncate

19

Warning about opening files

• If there is already a file open in the stream it will not open another file
• Check if the stream has a file open using is_open() or with fail()

f.open (“some_file.txt”);

if (f.is_open()){

//perform operations

}

else{

cout << “Error opening file” << endl;

}

20

Perform Action on the File

• Reading (Precondition: the file is not empty)
int num = 0;

ifstream f;

f.open (“numbers.txt”);

f >> num;

//can read the entire file by doing a while (!f.eof()){}

//(eof == end of file)

//read a single character with get(), read a line with getline()

• Writing (Caution: know where the cursor is in the file)
ofstream f;

f.open(“an_awesome_story.txt”);

f << “Once upon a time…” << endl;

21

Close the file

• Don’t forget to do this when you are done with the file
my_file_obj.close();

22

File Input – Using “space” as delimiter

ifstream fin;

fin.open (“book.txt”);

if (!fin.is_open())

return 1;

while (!fin.eof()){

string tmp_string;

int tmp_int;

// read non-blank characters;

fin >> tmp_string >> tmp_int;

cout << “Text: “ << tmp_string << endl;

cout << “Int: “ << tmp_int << endl;

}

fin.close();

23

File Input Strategies

• What if the input file does not delineate text with spaces?
• E.g. “student_name,grade,gpa”

• getline(cin, dest_string);

• Reads an entire line at once

• Previously used this when accepting user input from the console

• getline(cin, dest_string, ‘,’);

• Keeps reading text until reaching the specified char

• Discards the specified char

• Can be used to handle an alternate delimiter (e.g. comma)

24

The Newline Character

• Most user-readable files use newlines
• Makes the text much easier to read

• Often used to indicate “new entry”
• Make sure that your code handles these correctly

• Hint: Use std::istream::ignore()
• Discards one or more characters from the input stream

• Useful for discarding newline characters

• Common usage: cin.ignore() → throw away the next char

25

http://www.cplusplus.com/reference/istream/istream/ignore/

File Output

• You control the delimiters, newlines, etc.

• Easier to handle
string output_file = “book_stats.txt”;

ofstream fout;

fout.open (output_file.c_str(), ios::app);

if (!fout.is_open()){

cout << “Error, unable to open the file!” << endl;

return 1;

}

fout << “Hello world!” << endl;

fout.close();

26

File I/O Demo

27

	Slide 1: CS 162 Intro to Computer Science II
	Slide 2: Odds and Ends
	Slide 3: How do we separate files?
	Slide 4: How to avoid this problem?
	Slide 5: Today’s Topics:
	Slide 6: Compilation
	Slide 7: Compilation – can be interrupted
	Slide 8: In real practice…
	Slide 9: In real practice… (cont.)
	Slide 10: Makefile
	Slide 11: Makefile (cont.)
	Slide 12: More makefile
	Slide 13: Makefile Demo…
	Slide 14: Advanced makefile:
	Slide 15: Today’s Topics:
	Slide 16: File I/O
	Slide 17: File Stream Objects
	Slide 18: Open the file
	Slide 19: Open the file
	Slide 20: Warning about opening files
	Slide 21: Perform Action on the File
	Slide 22: Close the file
	Slide 23: File Input – Using “space” as delimiter
	Slide 24: File Input Strategies
	Slide 25: The Newline Character
	Slide 26: File Output
	Slide 27: File I/O Demo

